

Get things done.

LAB: Simple Security System with
Raspberry Pi, Enzo Online and Azure
Cognitive Services

Create a simple security monitoring system using a Raspberry Pi, Azure Cognitive

Services and Enzo Online.

Created by: Herve Roggero, Azure MVP

Released On: 4/14/2018

info@enzounified.com

mailto:info@enzounified.com

The purpose of this lab is to create a simple security monitoring system that uses a few key

services to assist with image analysis and log storage for auditing purposes. This project

leverages small IoT devices that can easily be placed in sensitive areas to monitor activity. This is

a conceptual project and should be considered a simple prototype to demonstrate the use of key

cloud technologies. This lab is divided in the following sections: Configuration, Image Analysis,

Auditing, and Alerting.

This Lab uses the following technologies:

 Raspberry Pi 3 or higher

 Python 3

 Camera

 Azure Cognitive Services

 Enzo Online

 Twilio

 Azure Storage

 PuTTY (to copy/paste code into the Raspberry Pi: https://www.putty.org/)

Pre-Requisites
Before starting this lab you should have the following:

 Hardware

o A Raspberry Pi with the Raspbian operating system installed and configured

o Python 3 installed (should come with Raspbian)

o A Raspberry Pi camera (Kuman for Raspberry Pi)

 https://goo.gl/jDFhFq

o XRDP to use Remote Desktop Services if you are using a Windows machine

 Use this command to install XRDP

sudo apt-get install xrdp

o A USB keyboard to control the Raspberry Pi

o A USB monitor to view the Raspberry Pi screen

o A WiFi or wired network for the Raspberry Pi to connect to the Internet

 Services

o A Microsoft Azure account (https://portal.azure.com)

 You can create a free account

o An Enzo Online account (https://portal.enzounified.com)

 You can create a free account

o A Twilio account to send text messages (https://www.twilio.com)

 You can create a free account

Overview
The lab uses a camera attached to a Raspberry Pi device to take pictures frequently, and analyze

each picture using the Microsoft Azure Cognitive Service. If the picture contains a person,

and/or a dangerous item, such as a knife, the code running on the Raspberry Pi will log the

information in an Azure Table data store through Enzo Online. The device will also send an SMS

https://www.putty.org/
https://goo.gl/jDFhFq
https://portal.azure.com/
https://portal.enzounified.com/
https://www.twilio.com/

text message using Twilio services through Enzo Online. Using Enzo Online removes the need

for complex SDKs and makes developing against complex cloud resources fast and easy.

While this lab only requires a single Raspberry Pi, it will work with multiple devices without

modification as shown in the diagram below.

Configuration

Configure the Camera
The first step in this lab is to configure the camera. You will need to follow the instructions found

here to install the module and enable the camera:

https://www.raspberrypi.org/documentation/configuration/camera.md

Create a Pictures directory on the Desktop
From your Raspberry Pi Desktop, create a Folder called Pictures. Unix is case-sensitive, so make

sure to respect the upper-case ‘P’ in the folder name.

Image Analysis

Azure Cognitive Service
You will need to create a Cognitive service in your Azure subscription so you can analyze images.

Please see instructions on the Microsoft Azure website to create the Cognitive service in Azure

(https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-apis-create-

account). Once created, you will need to note one of security Keys provided.

https://www.raspberrypi.org/documentation/configuration/camera.md
https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-apis-create-account
https://docs.microsoft.com/en-us/azure/cognitive-services/cognitive-services-apis-create-account

Code
Let’s create the first part of the code that communicates with the Azure Cognitive Service to

analyze a picture that the camera will take. This code takes a picture in the direction the camera

is facing, and saves it to a local file so that the image can be inspected for troubleshooting

purposes. The camera should be angled in a way that the image is not upside down, as this could

affect the quality of the analysis.

Create a new file (ex: securitysystem.py) on your Raspberry Pi desktop and double-click to edit

it. The Python editor will start automatically. Type the following code in your file; it imports the

necessary libraries and declares the variables needed for this lab. Calling the Azure Cognitive

Service is very simple from Python as it only requires the use of an HTTP Post; no specific

libraries or SDKs are needed.

The interesting part of this code is the call to the Azure Cognitive service, which is made by

issuing a POST request: conn.request("POST", analyze_uri % params, body, headers). Once the call

is made, the code inspects a JSON response looking for a tags array: tags =

(parsed['description']['tags']). If a tag contains the word ‘knife’ the method returns true, indicating

that a warning should be issued.

Note: Python is sensitive to leading spaces/tabs. Make sure the indentation is

exactly as shown in the code below.

Note: Information highlighted in blue means that it may need to be updated for the

code to work.

import http.client, urllib.request, urllib.parse, urllib.error, base64, json, uuid

from picamera import PiCamera

from time import sleep

import time

import requests

import sys

#cognitive settings

subscription_key = "YOUR_COGNITIVE_SERVICE_KEY"

uri_base = 'southcentralus.api.cognitive.microsoft.com'

analyze_uri = "/vision/v1.0/analyze?%s"

#other settings

fileName = "/home/pi/Desktop/Pictures/image.jpg"

headers = dict()

headers['Ocp-Apim-Subscription-Key'] = subscription_key

headers['Content-Type'] = "application/octet-stream"

camera = PiCamera()

def capturePicture(fipathToFileInDiskle):

 camera.capture(fipathToFileInDiskle)

def isDetected(pathToFileInDisk, headers):

 params= urllib.parse.urlencode({

 "visualFeatures": "Categories,Description",

 "launguage": "en",

 })

 with open(pathToFileInDisk, "rb") as f:

 inputdata = f.read()

 body = inputdata

 iswarning = False

 try:

 conn = http.client.HTTPSConnection(uri_base)

 conn.request("POST", analyze_uri % params, body, headers)

 response = conn.getresponse()

 data = response.read().decode('utf-8')

 #print(data)

 parsed = json.loads(data)

 tags = (parsed['description']['tags'])

 print ("response:")

 for c in tags:

 #print(c)

 if c == 'knife':

 iswarning = True

 break

 if iswarning:

 print('KNIFE DETECTED')

 conn.close()

 except Exception as e:

 print('Error:')

 print(e)

 return iswarning

Main code starts here

print('starting...')

while True:

 try:

 print("calling camera...")

 capturePicture(fileName)

 except:

 print("Error:", sys.exc_info()[0])

 sleep(5)

Auditing
In the previous section the code calls the Microsoft Azure service to analyze a picture taken from

the camera, and determines whether a specific tag has been detected by the service (such as a

knife). In this section we will save status information to an Azure Table which will be used for

auditing purposes.

Every time the status changes (knife detected or not), a new record will be added. To achieve

this we are using the Enzo Online service which requires its own access key (called the

AuthToken). Similarly to the Azure Cognitive service, you call the Enzo service using simple

HTTP commands by setting headers and optionally an HTTP body. The sections in yellow below

represent new code from the previous version, and the blue highlights are the security tokens.

Before you can call Enzo Online, you must configure an Azure Storage service in Azure, and

create a configuration setting in Enzo Online that points to the Azure Storage.

Configuration

Azure Storage

First you need to create an Azure Storage account in your Azure account. To create a storage

account, follow the instructions provided by Microsoft: https://docs.microsoft.com/en-

us/azure/storage/common/storage-create-storage-account. Note that you will need to obtain

your storage access keys to configure Enzo Online; they are found in the Access Keys tab of

your storage account.

Enzo Online

Once you created the Azure Storage account, go to the Enzo portal

(https://portal.enzounified.com) and create a new Azure Storage service with the following

values:

 Name: schoolstoragedev

 Enzo Instance: <leave the default value>

 Storage Account Name: The storage account name you created in Azure

 Storage Account Key: The primary or secondary storage account key in Azure

Once created, the configuration setting should look like this:

https://docs.microsoft.com/en-us/azure/storage/common/storage-create-storage-account
https://docs.microsoft.com/en-us/azure/storage/common/storage-create-storage-account
https://portal.enzounified.com/

Code
Once configuration is complete, you can now call Enzo Online from your code. Calling Enzo

Online is similar to the call made against the Azure Cognitive service; since no SDK is required it

is as simple as making an HTTP request to Enzo. The code will automatically attempt to create an

Azure Table if it isn’t found at startup by calling the createTable method. Then periodically, as a

knife is detected or not, the code will save an entry in the Azure Table saying so to keep an audit.

The saveResult method formats an XML document to be sent to the SaveEntity enzo method; a

JSON payload could also be sent instead of XML. The code adds the necessary headers

(authToken, _config and tableName), and adds a form post body (data) containing the XML

document. The complete source code is here:

Note: Code highlighted in yellow is new code from the previous example.

import http.client, urllib.request, urllib.parse, urllib.error, base64, json, uuid

from picamera import PiCamera

from time import sleep

import time

import requests

import sys

#device settings

locationname = 'location001' #will be used as the Azure table name

deviceid = 'iotdevice-001' #will be used as the RowKey

#enzo settings

tableconfig = 'schoolstoragedev'

enzourl="https://daas001.enzounified.com" #saving cloud data through enzo

enzourl_save= enzourl + '/bsc/azurestorage/saveentity' #saving cloud data through enzo

enzourl_tablecreate= enzourl + '/bsc/azurestorage/createtable' #create azure table

enzoguid="YOUR_ENZO_AUTHTOKEN"

xmldata="<root><PartitionKey>{}</PartitionKey><RowKey>{}</RowKey><warning

type='int'>{}</warning></root>"

#cognitive settings

subscription_key = "YOUR_COGNITIVE_SERVICE_KEY"

uri_base = 'southcentralus.api.cognitive.microsoft.com'

analyze_uri = "/vision/v1.0/analyze?%s"

#other settings

fileName = "/home/pi/Desktop/Pictures/image.jpg"

headers = dict()

headers['Ocp-Apim-Subscription-Key'] = subscription_key

headers['Content-Type'] = "application/octet-stream"

lastValue = False

camera = PiCamera()

def capturePicture(fipathToFileInDiskle):

 camera.capture(fipathToFileInDiskle)

def isDetected(pathToFileInDisk, headers):

 params= urllib.parse.urlencode({

 "visualFeatures": "Categories,Description",

 "launguage": "en",

 })

 with open(pathToFileInDisk, "rb") as f:

 inputdata = f.read()

 body = inputdata

 iswarning = False

 try:

 conn = http.client.HTTPSConnection(uri_base)

 conn.request("POST", analyze_uri % params, body, headers)

 response = conn.getresponse()

 data = response.read().decode('utf-8')

 #print(data)

 parsed = json.loads(data)

 tags = (parsed['description']['tags'])

 print ("response:")

 for c in tags:

 #print(c)

 if c == 'knife':

 iswarning = True

 break

 if iswarning:

 print('KNIFE DETECTED')

 conn.close()

 except Exception as e:

 print('Error:')

 print(e)

 return iswarning

def createTable(name):

 iotheaders={'authToken':enzoguid,

 '_config': tableconfig,

 'tablename':name}

 try:

 response=requests.post(enzourl_tablecreate, headers=iotheaders)

 print(response)

 except:

 print("Error:", sys.exc_info()[0])

def saveResult(iswarning):

 valuetosend = 0

 if iswarning:

 valuetosend = 1

 rowKey = uuid.uuid4()

 xmltosend = xmldata.format(deviceid, rowKey, valuetosend)

 print(xmltosend)

 iotheaders={'authToken':enzoguid,

 '_config': tableconfig,

 'tablename':locationname}

 formdata = {'data':xmltosend}

 try:

 response=requests.post(enzourl_save, headers=iotheaders, data=formdata)

 except:

 print("Error:", sys.exc_info()[0])

Main code starts here

print('starting...')

createTable(locationname) #create the table every time - will only work the first time

print('creating initial value')

saveResult(False)

while True:

 try:

 print("calling camera...")

 capturePicture(fileName)

 print("calling service...")

 iswarning = isDetected(fileName, headers)

 if lastValue != iswarning:

 print("calling Enzo...")

 saveResult(iswarning)

 lastValue = iswarning

 except:

 print("Error:", sys.exc_info()[0])

 sleep(5)

Viewing Auditing Information
To verify that you are indeed saving data in your Azure Table, you can use the Test Page

provided in the Enzo Portal:

 From the Enzo Online portal click on Test Page from the left menu

 Choose the Azure Storage service

 Select the GetEntities operation

 In the Additional Headers section, type the following:

 tablename: location001

 Click on Send Request

You should see an output similar to this (only a few records are displayed by default):

Alerting
Now that you can capture images and save audit information, let’s configure the system to send

an alert using the Twilio services. The simplest way to use Twilio is to send a SMS message (note

that you could also use the Messaging service to do so, however Twilio is a more robust

approach).

Signup for Twilio
To signup for Twilio, visit the Twilio website and sign up (https://www.twilio.com/try-twilio).

Once you have signed up, you will need to retrieve your Account SID and Twilio AuthToken

from the Dashboard. You will use this information later.

You will also need a Twilio phone number; in order to obtain a Twilio phone number, go to the

Learn &* Build / Build tab on the Twilio portal, and click on Get a number. As long as you have a

trial account, you can obtain a free Twilio phone number to send SMS text messages from.

Twilio Configuration in Enzo Online
In the Enzo Online portal, select the Twilio service and create a new configuration with the

following information:

 Name: twilioconfig

 AccountSID: YOUR_TWILIO_SID

 Auth Token: YOUR_TWILIO_AUTH_TOKEN

https://www.twilio.com/try-twilio

 Caller Id: TWILIO_PHONE_NUMBER (add +1 in front of the area code for a US phone

number; use your country code if not in the US)

 Country Code: +1 [note: this is your country code]

Your Twilio configuration should look like this:

Code
We are ready to send a message from the Raspberry Pi when a knife is detected; the code will

only send a message if there was no knife detected previously to avoid sending too many

messages.

The approach to send a Twilio message is conceptually the same than when we saved audit data

to the Azure Table. We simply call Enzo’s Twilio endpoint (bsc/twilio/sendsms) using the correct

headers (see the online help documentation for a list of headers:

https://portal.enzounified.com/Docs/Documentation.html#docTwilio).

The relevant section of the code looks like this, where the phoneNumbers variable is the phone

number that will receive the SMS message:

 iotheaders={'authToken':enzoguid,

 '_config': tableconfig,

 'phones': phoneNumbers}

 formdata = {'message': 'Warning: a knife was detected!'}

 try:

 response=requests.post(enzourl_sms, headers=iotheaders, data=formdata)

 except:

 print("Error:", sys.exc_info()[0])

The complete source code is below:

import http.client, urllib.request, urllib.parse, urllib.error, base64, json, uuid

https://portal.enzounified.com/Docs/Documentation.html#docTwilio

from picamera import PiCamera

from time import sleep

import time

import requests

import sys

#device settings

locationname = 'location001' #will be used as the Azure table name

deviceid = 'iotdevice-001' #will be used as the RowKey

#enzo settings

tableconfig = 'schoolstoragedev'

enzourl="https://daas001.enzounified.com" #saving cloud data through enzo

enzourl_save= enzourl + '/bsc/azurestorage/saveentity' #saving cloud data through enzo

enzourl_tablecreate= enzourl + '/bsc/azurestorage/createtable' #create azure table

enzoguid="YOUR_ENZO_AUTHTOKEN"

xmldata="<root><PartitionKey>{}</PartitionKey><RowKey>{}</RowKey><warning

type='int'>{}</warning></root>"

enzourl_sms = enzourl + '/bsc/twilio/sendsms'

phoneNumbers = 'ENTER_YOUR_CELL_PHONE'

twilioconfig = 'twilioconfig'

#cognitive settings

subscription_key = "YOUR_COGNITIVE_SERVICE_KEY"

uri_base = 'southcentralus.api.cognitive.microsoft.com'

analyze_uri = "/vision/v1.0/analyze?%s"

#other settings

fileName = "/home/pi/Desktop/Pictures/image.jpg"

headers = dict()

headers['Ocp-Apim-Subscription-Key'] = subscription_key

headers['Content-Type'] = "application/octet-stream"

lastValue = False

camera = PiCamera()

def capturePicture(fipathToFileInDiskle):

 camera.capture(fipathToFileInDiskle)

def isDetected(pathToFileInDisk, headers):

 params= urllib.parse.urlencode({

 "visualFeatures": "Categories,Description",

 "launguage": "en",

 })

 with open(pathToFileInDisk, "rb") as f:

 inputdata = f.read()

 body = inputdata

 iswarning = False

 try:

 conn = http.client.HTTPSConnection(uri_base)

 conn.request("POST", analyze_uri % params, body, headers)

 response = conn.getresponse()

 data = response.read().decode('utf-8')

 #print(data)

 parsed = json.loads(data)

 tags = (parsed['description']['tags'])

 print ("response:")

 for c in tags:

 #print(c)

 if c == 'knife':

 iswarning = True

 break

 if iswarning:

 print('KNIFE DETECTED')

 conn.close()

 except Exception as e:

 print('Error:')

 print(e)

 return iswarning

def createTable(name):

 iotheaders={'authToken':enzoguid,

 '_config': tableconfig,

 'tablename':name}

 try:

 response=requests.post(enzourl_tablecreate, headers=iotheaders)

 print(response)

 except:

 print("Error:", sys.exc_info()[0])

def saveResult(iswarning):

 valuetosend = 0

 if iswarning:

 valuetosend = 1

 rowKey = uuid.uuid4()

 xmltosend = xmldata.format(deviceid, rowKey, valuetosend)

 print(xmltosend)

 iotheaders={'authToken':enzoguid,

 '_config': tableconfig,

 'tablename':locationname}

 formdata = {'data':xmltosend}

 try:

 response=requests.post(enzourl_save, headers=iotheaders, data=formdata)

 except:

 print("Error:", sys.exc_info()[0])

def sendSMS():

 iotheaders={'authToken':enzoguid,

 '_config': twilioconfig,

 'phones': phoneNumbers}

 formdata = {'message': 'Warning: a knife was detected!'}

 try:

 response=requests.post(enzourl_sms, headers=iotheaders, data=formdata)

 except:

 print("Error:", sys.exc_info()[0])

Main code starts here

print('starting...')

createTable(locationname) #create the table every time - will only work the first time

print('creating initial value')

saveResult(False)

while True:

 try:

 print("calling camera...")

 capturePicture(fileName)

 print("calling service...")

 iswarning = isDetected(fileName, headers)

 if lastValue != iswarning:

 print("calling Enzo...")

 saveResult(iswarning)

 sendSMS()

 lastValue = iswarning

 except:

 print("Error:", sys.exc_info()[0])

 sleep(5)

Monitoring Activity Through Enzo Online Portal
Last but not least, let’s use the Enzo Online portal to see the activity generated by the Raspberry

Pi. To view the calls made to Enzo Online, use the Access Log tab. Select the Twilio service for

example and click on Apply. You should see an output similar to the picture below. Choosing

Azure Storage would give you the calls made to the Azure Storage table.

This log will also return most errors that occurred when calling Enzo Online. For example, the call

to GetEntities to the Azure Storage service failed because the tableName header was missing.

