

User Guide
The Any to Any Data Replication Engine .

Released On: 10/14/2022

This documentation provides detailed configuration settings, options, and technical specifications for

configuring data replication jobs across data sources.

 GENERAL RELEASE

1

Contents
Introduction .. 5

Concepts and Terminology ... 5

Data Sync Agents .. 5

Job Readers and Job Writers Overview .. 6

Synthetic CDC .. 7

Direct Sync Operations ... 7

Job Types ... 8

Multicasting .. 8

Connection Strings .. 8

Database & ODBC Connections .. 9

SQL Server Connection .. 9

MySQL Connection .. 10

Oracle Connection... 10

Teradata Connection ... 11

Generic ODBC Connection .. 11

Drive & FTP Connections ... 11

Local Path .. 11

AWS S3 Bucket .. 12

Azure Blob Container .. 12

FTP Site .. 12

HTTP/S REST Connections ... 12

API Key .. 13

Basic Authentication ... 13

Token Authentication ... 14

Bearer Authentication ... 14

Messaging Connections .. 16

AWS SQS .. 16

Azure Event Hub ... 16

Azure Service Bus .. 17

Google PubSub .. 17

Kafka .. 17

MSMQ ... 17

 GENERAL RELEASE

2

RabbitMQ .. 18

Big Data/NoSQL Connections .. 18

Google BigQuery ... 18

CosmosDB Databases .. 18

Job Readers ... 18

Create a Sync Job .. 18

Database Job Reader .. 21

Change Data Capture .. 22

Change Data Capture .. 22

Change Tracking .. 23

Overriding the Deleted Records Identification Method ... 24

Using the Timestamp / DateTime Column .. 26

Drive Job Reader (Parquet, XML, JSON, CSV).. 27

Reading CSV Files .. 27

HTTP/S REST API Job Reader ... 28

JSON/XML Column Transformation .. 29

Dynamic Parameters ... 29

XML Example ... 31

JSON Document Example .. 32

JSON Array Example .. 33

Messaging Consumers .. 34

Pointer Values: Editing the High Watermark .. 35

Job Writers .. 36

Create a Job Writer from An Existing Job Reader ... 36

Database Targets .. 39

SQL Server (Native Provider)... 39

ODBC Drivers & Enzo Server ... 39

Sending an XML/JSON Document ... 40

One SQL Command per Record .. 40

One SQL Command per Batch ... 41

Create Target DDL Scripts ... 42

Known Targets .. 42

Generic Targets ... 43

 GENERAL RELEASE

3

Preview SQL Commands ... 44

HTTP/S Targets .. 44

Messaging Targets .. 45

Drive Targets ... 45

Common Write Options .. 45

Shadow Copy ... 46

Create New Files ... 46

Update Existing Files (Data Distribution/Bucketization) ... 46

Date Replacement Tokens .. 47

Parquet Files.. 47

JSON Files .. 48

XML Files ... 48

CSV Formatting Options .. 48

Big Data/NoSQL Targets .. 49

Google Big Query .. 49

CosmosDB ... 50

Automatic JSON Document Generation ... 50

Build a Custom JSON Document ... 51

Data Sync Files .. 52

Replay Sync Files ... 52

Resync Data ... 53

Full Sync Files .. 54

Job Triggers ... 54

Logging .. 55

Execution Log .. 55

Execution History .. 56

Data Pipeline ... 57

Data Filter .. 58

Data Hashing ... 59

Data Masking .. 59

Data Quality .. 60

Dynamic Data Column .. 61

SQL Expression .. 61

 GENERAL RELEASE

4

Enzo Expression .. 62

Remove Column .. 62

DataZen Functions .. 62

Nested Functions .. 64

Uses ... 64

Enzo HTTP Functions ... 64

Example 1: Unauthenticated HTTP Get .. 65

Example 2: Unauthenticated HTTP Post with Headers ... 65

Example 3: Authenticated HTTP Get ... 65

Sync Agent REST API ... 66

Appendix ... 68

Limitations .. 68

Target DDL Script .. 68

Upsert Script ... 68

Data Replication .. 68

Transactional Consistency Considerations ... 68

Data Type Conversions ... 69

Oracle to SQL Server Data Mapping ... 69

MySQL to SQL Server Data Mapping ... 69

 GENERAL RELEASE

5

Introduction
DataZen is a data replication platform that allows you to copy data from any source system into any

target system. DataZen supports the following use cases:

• Copy all records from any source system into one or more target systems

• Identify changes made to a source system and forward them to one or more target systems

• Listen for messages and forward them to any target system

• Use JSON, XML, CSV, or Parquet files as data sources or target files

The following diagram depicts the various scenarios that are possible with DataZen. Because DataZen

can inspect messages, perform relevant message conversions, and supports a large number of

authentication mechanisms, it can forward full record sets or only the identified changes in the correct

target format.

Concepts and Terminology
Let’s start by introducing a few technologies and concepts related to data replication that apply to

DataZen.

Data Sync Agents
A Data Sync Agent is needed to read from and/or write to a system. It is best to install a Data Sync

Agent close (for optimum network bandwidth reasons) to the systems that the agent will read from or

write to.

For example, if you have a source system (ex: an Oracle database) in New York, and want to replicate

changes to a Kafka endpoint in Atlanta, you would likely install two agents: one in each location.

However, it is possible to use a single agent to perform both the read and write operation for most

implementations.

 GENERAL RELEASE

6

The Data Sync Agent is made of a few components:

• Job Readers – read data from any source system

• Job Writers – write data to any target system

• CDC Engine – internal engine that automatically detects changes (Synthetic CDC)

• Staging Store – stores configuration settings and state information of the source data

• HTTP/S Listener – a controller listener that DataZen Manager uses to manage the agent

• Sync File – a Universal Change Log that can be copied and played back

Data Sync Agents require a connection string to a Staging database stored in SQL

Server, as specified in the Installation instructions. Each agent is licensed separately.

Job Readers and Job Writers Overview
Job Readers and Job Writers are designed to communicate to source and target systems supported by

DataZen. A Job Reader Job fetches data from the source system at the specified interval, when started

manually, or automatically for messaging consumers. Job Readers then forward data extracted from the

source system as-is, or forwards the data to the DataZen Change Data Capture (CDC) Engine to extract

changes automatically (a.k.a. Synthetic CDC). If a change is detected in the source data, a Sync File is

produced in the specified output directory.

Change Logs hold the changes that were detected from the source system and stored in a universal

format so that it can be played back on any target system. When first created, the Change Log may

contain all the records from the source system. To learn more about Sync Files, see the Data Sync Files

section.

Job Writers start on a schedule and inspect a shared folder for new Sync Files; they can also be started

upon completion of a Job Reader using a Job Trigger. When a new Change Log has been detected, the

Job Writer extracts the data found in the log, converts each record in the format expected by the target

system, and executes the necessary command(s) against the target system.

When the target system is a relational database, an Upsert operation is either an

Insert or an Update operation depending on whether the record is found in the target

system or not based on the Key Columns specified.

 GENERAL RELEASE

7

This architecture allows Job Readers and Job Writers to reside on entirely different networks, with only a

network share or cloud folder (or an FTP site) in common. Because the Change Log can also be

encrypted using PGP, the Change Log can also be stored on any public cloud platform.

Synthetic CDC
DataZen has a built-in data differential engine that can quickly identify net changes of data sources over

time. This feature is designed to extract changes from source systems that do not offer a change stream

or that do not have a mechanism to keep a high watermark pointer.

DataZen triggers the internal synthetic CDC identification automatically based on the type of source

system and options selected for the job. Generally speaking, this differential engine tracks the signature

of source records in an internal staging database and compares them over time as records are being

extracted from the source system.

The synthetic CDC engine is bypassed in the following scenarios:

- the source system is a CDC data source itself (such as SQL Server CDC or Change Tracking)

- the job reader does not specify a Key Column

When the Synthetic CDC option is bypassed, all records detected from the source system are forwarded

to the Sync File.

Direct Sync Operations
While Job Readers and Job Writers can be created individually for maximum reuse and multi-casting, it is

possible to create a single job that performs both Read and Write operations. A Direct Sync operation

creates Sync Files behind the scenes; these files can be automatically deleted if desired.

The Advanced Settings tab allows you to control whether sync files are deleted upon completion:

Direct Sync Jobs do not offer PGP encryption

 GENERAL RELEASE

8

Job Types
Once a Data Sync agent has been configured and registered in DataZen Manager, you can start

managing Job Readers and Job Writers. The following types of jobs can be created:

• Data Sync Job – a reader (and optionally a writer) that can access any source system except

messaging platforms

• Sync Writer Job – a writer that reads from a Sync File

• Messaging Consumer – a reader that listens from a messaging platform (and optionally a writer)

• Passthrough Consumer – a simpler reader that forwards messages from one messaging

platform to another

Multicasting
This allows you to replicate data to multiple systems if the Job Reader being used as the source does not

have a Job Writer specified as part of its definition; in other words, the Target System for the Job Reader

must be set to None.

For example, the source system could be a SharePoint List; you can create two Job Writers pointing to

the same folder where the Sync Files are located, and replicate data to a SQL Server database and

MongoDB Atlas database using an ODBC Driver or Enzo Server.

Connection Strings
Before creating replication jobs, it is necessary to first configure connection strings. Connection strings

help you define connection settings for all the necessary source and target endpoints for all supported

data sources, including Cloud Drives & FTP sites, Databases & ODBC drivers, Messaging endpoints, and

HTTP/S endpoints.

To manage connections, select the desired agent and choose Configuration -> Central Connection

Strings. From this screen you can add, duplicate, delete or edit connection strings.

To create a connection, select
New and choose the type of
connection you would like to
create.

To edit a connection, double-
click on it.

 GENERAL RELEASE

9

Database & ODBC Connections
Database connections typically require an ODBC driver installed on the computer where the agent is

installed, and on the server where the Manager is installed. Specific options are available for SQL Server,

Oracle, MySQL, Teradata, and a more generic configuration screen for other ODBC drivers.

SQL Server Connection

Choose SQL Server (Native Provider) when connecting to an on-
premise SQL Server database, Azure SQL Server or for Enzo
Server.

Blank out the Port number to use the default port.

If no database is provided in the dropdown list, type the
database name to connect to.

Click Try Connection… to make sure the credentials are correct.
Then click OK.

Choose SQL Server (ODBC Driver) if you would like to use a
specific SQL Server driver installed on your machine. An ODBC
Driver list will be displayed showing you all available 64-bit
drivers.

Note: Only 64-bit ODBC drivers can be used.

 GENERAL RELEASE

10

MySQL Connection

To connect to a MySQL database, choose My SQL (ODBC
Driver). You must have installed a valid 64-bit MySQL ODBC
driver separately.

Note: Only 64-bit ODBC drivers can be used.

Blank out the Port number to use the default port.

If no database is provided in the dropdown list, type the
database name to connect to.

Click Try Connection… to make sure the credentials are correct.
Then click OK.

Oracle Connection

To create an Oracle connection, choose the Oracle (ODBC
Driver) option.

Note: Only 64-bit ODBC drivers can be used.

Select the correct Oracle ODBC driver (must be installed
separately) from the list and enter your database
credentials.

Click Try Connection… to make sure the credentials are
correct. Then click OK.

 GENERAL RELEASE

11

Teradata Connection

To connect to Teradata, select Teradata (ODBC Driver) from
the list of options.

Note: Only 64-bit ODBC drivers can be used.

Blank out the Port number to use the default port.

Select the Teradata driver (must be installed separately) and
enter your database credentials.

Click Try Connection… to make sure the credentials are
correct. Then click OK.

Generic ODBC Connection

To use a generic driver, such as a Simba ODBC driver,
choose Other (ODBC Driver). You can either enter the full
connection string here, or enter a DSN name you have
created using the ODBC Manager (64-bit).

Note: Only 64-bit ODBC drivers can be used.

Click Try Connection… to make sure the credentials are
correct. Then click OK.

Drive & FTP Connections
Drives and FTP connections allow you to replicate files (XML, JSON, CSV and Parquet) stored locally, on

cloud drives, or on FTP servers. In addition, these connections can be used to share Sync Files between

Job Readers and Job Writers.

Local Path

Choose Local Path when the files are located on a local drive or
a UNC path. If the path requires credentials, specify them in the
Login as user and password fields.

 GENERAL RELEASE

12

AWS S3 Bucket

Choose AWS S3 Bucket when the files are located on the
Amazon Web Service platform. Both an Access Key and Access
Secret key is required. Select or type one of the available
regions, the enter the S3 Bucket to use.

When the keys are valid, you can use the Dropdown to view all
available buckets, and create a bucket if it doesn’t exist.

Azure Blob Container

Choose Azure Bloc Container, and specify an Azure Connection
String; you can create a Blob Container from the screen if
needed, or select a default container from the dropdown box.

FTP Site

Select FTP Site to connect to an FTP server.

Enter the full FTP URI, starting with ftp://...

The Folder Path must be entered separately and start at the
root of the FTP site.

Enter the User ID and Password to use, and check the Use
Passive Connection if needed.

The Ignore SSL Errors option is currently experimental; its purpose is to
eliminate SSL errors from FTP sites using older or outdated SSL
certificates.

Click Try Connection… to make sure the credentials are correct.
Then click OK.

HTTP/S REST Connections
Use this connection type when accessing REST API endpoints, such as Twitter, Facebook, Google or any

other cloud service directly. All HTTP/S connections require an endpoint, an authentication mechanism,

and offer Call Rate and Kilobyte Rate limiting options to limit the speed of the calls.

 GENERAL RELEASE

13

Enter a name for the connection, and a complete HTTP URL.

When no authentication is required, select None in the
Authentication option.

You may enter rate limiting for both the frequency of the calls
and the amount of data retrieved from the service within a time
window. In this example, we have set a limit of up to 10 calls per
minute and no more than 15KB per minute. When either of
these thresholds is reached, the job will slow down.

Click Try Connection… to make sure the credentials are correct.
Then click OK.

The following section explains how to setup various authentication options.

API Key

Some services require API Key authentication. This is usually
done using a custom header key/value pair, or sent as a Query
Parameter added to the URL.

This example shows you how to setup an HTTP connection to a
local Enzo Server to call the RabbitMQ adapter.

To send the API Key as a query parameter, check the Send as
Query String option.

The encode the key using Base-64 encoding, select the Encode
secret using Base-64 Encoding option.

Basic Authentication

Some services require Basic Authentication. This is usually done
using a User Id and Password, and hashed into a single value as
part of the Authentication header of a request.

This example shows you how to setup an HTTP connection to
the Mailchimp v3.0 API using Basic Authentication.

 GENERAL RELEASE

14

Token Authentication

Some services require Token Authentication. This is usually done
by first obtaining a Personal Access Token (PAT), and added as
part of the Authentication header of a request using the Token
authentication scheme.

Bearer Authentication

Some services require Bearer Authentication. This typically
requires obtaining an OAuth 2.0 token. If you have the token
already available, simply paste it in the Bearer Token field.

To obtain an OAuth token or a Refresh Token, click on the
Obtain OAuth Token… link.

Certain services (such as Twitter) generate a Bearer token directly, and/or the Bearer

Token never expires. In these cases, you may choose to paste the Bearer Token into

the Bearer Token directly without using the OAuth Token wizard.

DataZen supports OAuth 2.0 with or without Refresh Tokens and allows you to customize the requests

made to regenerate tokens automatically. The OAuth Wizard also supports client-flow authentication

and allows you to authorize DataZen directly.

To generate a new Bearer Token click on the Obtain OAuth Token link and follow these steps:

If the service you would like to configure is listed in the pre-
configuration list, select it. In this case, the Google Cloud
OAuth 2.0 option is selected. Because this service requires
a client-flow authorization, a Token URL is automatically set
below.

In some cases, you may need to modify the URL to include
an Account ID or Tenant ID, as needed.

If you want to connect to another endpoint, not found in
the pre-configured list, choose Customize OAuth Settings.
Select whether or not the service requires client-flow
authorization.

Click Next.

 GENERAL RELEASE

15

Without Client-Flow Authentication

If the service does not require client-flow authentication, a
simpler screen will be displayed in which you can enter
your client id, which will be used in the following screen.

With Client-Flow Authentication

If the service requires client-flow authentication, this
screen will display the necessary options to start the flow.
Each parameter is customizable, including the parameter
names and values.

Once the values are specified, click on Start Client
Authorization Flow. This will open up your local browser
and allow you to authentication and obtain a code (or
access token).

NOTE: in most cases, DataZen will intercept the response
and automatically extract the code. If necessary, you can
also obtain the code from the browser window manually
and paste it in the Authorization Code box. Keep in mind
that these codes (or access tokens) expire relatively quickly.

Most services require the use of Scopes, to determine what
access level you require. When possible, DataZen selects a
default scope for you; however, you should review the
service documentation to ensure you select all the scopes
you need to authorize DataZen to access the desired
service endpoints.

To select the desired scopes or to open the URL that lists
the scopes available (when possible), click on the … next
the scopes textbox. Please note that not all available
scopes may be listed in the dropdown box.

This last step allows you to obtain a Bearer Token, and
when possible/available a Refresh Token. If you selected a
pre-configured endpoint on the first screen, these settings
will be selected for you; just click on Call Bearer Token
Endpoint to obtain your token(s). This call may only work
once; access tokens generated in the previous step can
only be used once.

Some services require the use of an additional user id in
addition to a secret; for these endpoints, select User Id &
Secret in the dropdown box; the UI will be changed to
allow you to enter a user id value.

This screen allows you to change the majority of the
settings to call the token endpoint, including the HTTP Verb
used (GET, POST, PUT), and Authentication Mode (None,

 GENERAL RELEASE

16

Basic) and the Grant Type for example. You can also
customize the Query Parameters and the Payload.

The following replacement tokens are available for both the Query
Parameters and the Payload:

{user_name} – the User Id provided on this screen
{client_secret} – the Secret value provided on this screen
{code} – the code obtained on the prior screen
{scope} – the list of scopes provided on the prior screen
{redirect_uri} – the redirect URI provided on the prior screen
{client_id} – the Client Id value provided on the prior screen
{grant_type} – the grant type entered on this screen
{token} – the current Bearer Token
{refresh_token} – the current Refresh Token

When building a custom HTTP Query and/or Payload, you
can either enter the necessary values directly, or use
replacement tokens.

For example, the following queries are equivalent assuming
the redirect URI provided in the previous screen was
https://localhost:

redirect_uri=https://localhost
redirect_uri={redirect_uri}

When the service supports Refresh Tokens, you can further
configure the way the refresh operation will be made. Click
on the Refresh Token Settings tab.

Similarly, you can configure the grant type, the HTTP
method, the authentication mode, and the URI to call along
with the query and payload parameters.

If the refresh URI is left blank, the bearer token endpoint
specified on the Bearer Token tab will be used.

NOTE: If your refresh token has expired, you may need to
go back to the previous screen and generate a new access
token.

Messaging Connections
DataZen can connect to a number of messaging platforms both as a Message Consumer and Message

Publisher.

AWS SQS

To connect to an AWS SQS queue, choose the AWS SQS Service
Type. Enter the AWS SQS service URL (usually similar to
https://sqs.AWS-REGION-NAME.amazonaws.com), your access
key, access secret, and your AWS Account ID.

You can specify a default Queue Name to be used by Jobs. Click
on the ellipses to view available queues.

Azure Event Hub

To connect to an Azure Event Hub, choose the Azure Event Hub
Service Type. Enter the Event Hub Namespace connection
string.

WARNING: The Azure Portal also provides an Event Hub
Connection string; it is recommended to use the Namespace
connection string instead since it is not limited to a specific
event hub.

You can specify a default Event Hub Name to be used by Jobs.

https://sqs.aws-region-name.amazonaws.com/

 GENERAL RELEASE

17

Azure Service Bus

To connect to an Azure Service Bus, choose the Azure Service
Bus Service Type. Enter the Service Bus Namespace connection
string.

WARNING: The Azure Portal also provides specific Service Bus
Connection string; it is recommended to use the Namespace
connection string instead since it is not limited to a specific
endpoint.

You can specify a default Queue, Topic, or Subscription to be
used by Jobs.

Google PubSub

To connect to a Google PubSub service, choose the Google
PubSub Service Type. Enter the PubSub endpoint, which is
usually pubsub.googleapis.com:443.

Enter your Project ID and your entire OAuth 2.0 Client ID JSON
file in the respective fields. You can download your Key JSON file
from the Google Cloud portal.

You can specify a default Topic and Subscription to be used by
Jobs.

Kafka

To connect to a Kafka service, choose the Kafka Service Type.
Enter the Kafka endpoint, which is similar to pkc-
epwny.eastus.azure.confluent.cloud:9092 when connecting to
a Confluent Kafka endpoint.

Enter the various connection settings, including your User Id and
Secret. The Topic name is optional; you can view available topics
by click on the ellipses.

MSMQ

To connect to a MSMQ queue, choose the MSMQ Service Type.
Enter the MSMQ Queue Path. To connect to a local private
queue, use this notation: .\private$\myqueuename.

To locate queues on your network, click on the ellipses.

You can also specify the default formatter to use and a default
message label when sending messages.

 GENERAL RELEASE

18

RabbitMQ

To connect to a RabbitMQ service, choose the RabbitMQ Service
Type.

• Enter the host name where RabbitMQ is listening on

• To use the default exchange, leave the Exchange value
blank

• You can choose specific exchanges, such as Direct,
Fanout, or Topic

• Enter the User Id and Password used to authenticate

• Specify any additional option as needed

Big Data/NoSQL Connections
BigData and NoSQL endpoints are treated by DataZen as specialized HTTP/S endpoints; as such, they

also support Call Rate and KB Rate limiting as explained in the HTTP/S REST Connections section.

Google BigQuery

To connect to a Google BigQuery endpoint, choose the Google
BigQuery Service Type. The Google endpoint for this service is
usually: https://bigquery.googleapis.com/bigquery/v2/

• Enter your project id

• Enter the entire OAuth 2.0 Client ID JSON file in the
respective fields. You can download your Key JSON file
from the Google Cloud portal

• Specify the default DataSet and Table to use

CosmosDB Databases

To connect to a CosmosDB database endpoint, choose the
CosmosDB connection Type and enter the Azure Connection
String to the CosmosDB service. The Account Name will be
automatically extracted and displayed.

Choose a default database and table from the dropdown lists.

Job Readers
Data Sync Jobs consist of a Job Reader, and optionally a Job Writer. This section explains the various Job

Reader options.

Create a Sync Job
To create a Data Sync job, select the desired Sync Agent, and follow these steps:

https://bigquery.googleapis.com/bigquery/v2/

 GENERAL RELEASE

19

Select New -> Data Sync…

A Data Sync job always creates a reader, and
optionally a writer. When a writer is also created,
the Data Sync job is called a “Direct” job.

Specify a Job Name; the name must be unique for
this agent; it is recommended to use a descriptive
name. Special characters are not allowed.

Select an existing source connection, or click on
the ellipses … to manage connection strings. See
the Connection Strings section for more
information.

When using a database connection, enter a SQL
command and click the Preview… link.

You can enter any valid SQL command including
EXEC calls for SQL Server. However, simpler SQL
commands may enable Data Zen to apply
windowing heuristics to optimize data fetch
operations.

NOTE: If the SQL command is too complex, the
preview may return all available records.

The above example shows you how to create a Reader that connects to database or an ODBC driver. However, the Job
Reader can read from flat files, HTTP REST APIs, and Messaging platforms. See the File-Based Replication, Messaging
Replication, and HTTP REST API sections for more information.

Click on the Replication Settings tab. Choose one
or more Key Columns. Key Columns are used to
identify changes.

Select or type the desired Cron schedule.

NOTE: If no key columns are specified, Data Zen
will only create Full Data Sync files and all source
records will be forwarded every time.

Note: The Target Sync option allows you to choose a folder where
the Sync Files will be created; you can also choose an FTP site or a
cloud drive.

 GENERAL RELEASE

20

To encrypt the Data Sync File, select an existing
PGP Public Key.

The Advanced Settings tab allows you to control
the way DataZen selects records from the source
system. These options can be useful to control
memory usage for tables containing millions of
records.

You can also choose how errors are handled using
a retry strategy. The Dead Letter Queue (DLQ) path
can be specified here. Check the “Keep detailed
execution log” option if desired.

The Data Pipeline tab allows you to add data
masking, data filtering, data quality validation,
data hashing, and adding dynamic columns. See
the Data Pipeline section for more information.

The Target System tab allows you to select the
system where the records will be sent to. Leaving
this option blank allows you to create Change Logs
that can be replayed at any time in the future.

If you choose a target system, you will not be able
to replay the change logs.

Job Triggers allow you to start other jobs when this
one completes. Various options are available. See
the Triggers section for more information.

 GENERAL RELEASE

21

Click OK to save the Data Sync job.

Select the newly created reader, right-click on it,
and select Run.

NOTE: If you have specified a Cron Schedule, the
job starts automatically.

You can view the output of the job below in the
Log section. Make sure to select Debug Output to
see all relevant details.

Once the execution of the operation has
completed, the Last Execution (with changes)
window will show fetch statistics including the
time it took to perform the read options and the
change data capture. The output file (Package File)
is also found here.

We can see that 603 records are available.

The Execution Id is a sequence number for a Sync file; because the Execution Id

represents a date/time, this number increases every time a new Sync File is created.

Database Job Reader
When the source system is a database, such as a SQL Server database or an ODBC driver, the Job Reader

consists of a SQL command. The SQL command itself needs to conform to the source database platform.

However, depending on the settings of the Job Reader, the SQL command may be modified to reach

higher performance or to select a subset of the records used for replication. If using Change Data

Capture, the SQL command is generated automatically; see the Change Data Capture section for further

information.

 GENERAL RELEASE

22

Generally speaking, the simpler the SQL Command, the easier it will be for DataZen to modify it for

performance needs. However, these optimizations are optional. You can, in theory, create any script

supported by the database engine here, including Group BY operations, JOINs and calling Stored

Procedures and Functions.

If the SQL Command is too complex, the Max Rows options may fail silently and return all available rows

instead.

When using a database connection, enter a SQL
command and click the Preview… link.

You can enter any valid SQL command including
EXEC calls for SQL Server. However, simpler SQL
commands may enable Data Zen to apply
windowing heuristics to optimize data fetch
operations.

NOTE: If the SQL command is too complex, the
preview may return all available records.

Change Data Capture
Using Change Data Capture instructs DataZen to read from known internal tables of the database engine

in order to capture changes, and bypass DataZen’s internal synthetic CDC Engine.

NOTE: When a CDC method is used, the Key Columns and Deleted Record identification options are

automatically set and are disabled.

This feature is currently only available for SQL Server databases.

If you need to transfer all initial records from a source table, consider enabling CDC

first, then perform a backup/restore of the table(s) manually. The CDC features only

forward database changes; not the initial records.

Two modes are available for SQL Server: Change Data Capture and Change Tracking.

Change Data Capture

If your SQL Server database version supports the Change Data Capture option provided by the database

engine, DataZen can read the underlying CDC tables to extract the changes directly. The database

selected must be setup for CDC; DataZen can assist with this operation; click on Enable CDC now to

allow CDC on the selected database.

 GENERAL RELEASE

23

SQL Server CDC is not available on Express Editions of SQL Server.

Once CDC is enabled on the database, select the table to capture. Uncheck the Show CDC enabled

tables only to view all tables in the database. If the table is not enabled for CDC, a warning will be

displayed; you can enable the table for CDC by checking the Enable… link.

Once enabled, select the Capture Table to track and select the types of changes to track: Inserts,

Updates and Deletes. You can either capture all changes or only the net changes since the last call by

checking the Net changes only option.

Change Tracking

Change Tracking is another change capture feature of SQL Server databases; these internal tables

capture “net” changes only (as opposed to Change Data Capture). Choose the Change Tracking Table

method, and select the table to capture. If the table is not configured for change tracking, a warning will

be displayed; you can enable Change Tracking by clicking on the Enable link.

Choose which change types you would like to track: Inserts, Updates, and Deletes.

 GENERAL RELEASE

24

Overriding the Deleted Records Identification Method
When the source system is a relational database, there are three ways DataZen can identify deleted

records, if needed:

• Default Heuristic

• Custom Full Read

• Custom Change Data Capture

The Default Heuristic approach works best when no Timestamp/DateTime column is specified, or when

the Source SQL provided is a simple SELECT operation and the source system has relatively few records.

If no Timestamp/DateTime column is specified, DataZen infers deleted records by assuming the SQL

command returns all available records, and assumes that records missing from the previous execution

have been deleted. In other words, when no Timestamp/DateTime column is specified, DataZen does

not need to make another call to the source system. You can inspect and execute the modified SQL

command by clicking on the link next to the Identify and Propagate Deleted Records checkbox to

preview the output of the SQL command.

The Custom Full Read approach allows you to enter a custom SQL command that returns all available

records from the source system; the command specified can be any valid SQL command, but must

return the Key Columns. Similar to the Default method, this approach assumes that the SQL command

returns all available records; DataZen assumes that records missing from the previous execution have

been deleted. Use this option if the SQL command generated by the Default Heuristic method is too

complex and the source system doesn’t offer a Change Data Capture mechanism.

 GENERAL RELEASE

25

The Custom Change Data Capture option can be used if the source system offers a tracking mechanism

for identifying which records were deleted (such as a Change Data Capture table). You can configure the

Job Reader to execute a custom SQL command that returns the deleted records only; for best results,

the SQL command specified should a column that identifies the change token that marks the last known

change from the source system (identified in DataZen as the Last Deleted Pointer). This allows DataZen

to keep track of the last known deleted operation, and only forward the relevant deleted records. In the

example below, the SQL command returns two important columns: the Key Column (ID field) that

identify uniquely the deleted records, and the ChangeToken field (specified as the Token Column) that

tracks the last known change token from the source Change Data Capture.

Use a ?, ‘?’ or ‘?:null’ placeholder to inject the last token value retrieved; the placeholder has the

following behavior the first time the command is executed (when no change token value exists):

• ? is replaced with a 0 (do not include quotes when the last token is a decimal)

• ‘?’ is replaced with an empty string (‘’)

• ‘?:null’ is replaced with a NULL value

 GENERAL RELEASE

26

Identifying deleted records is only available if at least one Key Column has been

selected.

Using the Timestamp / DateTime Column
By default, when the Timestamp is not specified, DataZen is capable of identifying changes from source

systems automatically, even if the source system doesn’t keep track of insert, update and delete

operations. However, in order to achieve this capability, DataZen must read all available records from

the source system every time the Job Reader runs. While this may be acceptable for most source

systems, it could present a performance issue for very large tables.

In order to improve the performance of a Job Reader against a data source you can use the

Timestamp/DateTime column setting, when the source SQL command is a SELECT operation. This

option is equivalent to using a High Watermark setting for REST APIs. DataZen attempts to modify the

Source SQL command to include a filter on the column specified. This optimization can work if the

column specified is a Timestamp, Date/Time or a Numeric data type; in some cases it may also work

with String data types. By specifying a Timestamp/DateTime column, DataZen can reduce the number

of records read from the source system significantly. You can either select a field name from the

dropdown box, or enter the column directly in the field manually. DataZen keeps track of the maximum

value identified in the Last Read Pointer property.

Specifying a Timestamp/DateTime column is only available for Database Sources and

if the SQL Command is a SELECT operation.

 GENERAL RELEASE

27

Drive Job Reader (Parquet, XML, JSON, CSV)
A Sync Job can read data from files located on drives, or in the cloud, and process them as a regular data

source. In order to be processed, the file needs to confirm to a supported format. If you need to read

files using other formats not support by DataZen, you may still be able to do so by using an ODBC driver

provided by a 3rd party vendor.

To read from files, you first need to create a Drive Connection String.

Parquet, XML, JSON and CSV files can be read from and written to a local drive, in

Azure Storage Containers, in an AWS S3 bucket, or on an FTP server.

The Directory Override option allows you to choose a different
root path from the default one provided by the selected source
connection

The File Pattern field allows you read a subset of files based on the
name of the file. You can use the * wildcard to process multiple
files (ex: *-test.txt). When the file type is CSV, JSON or XML, you
can preview the raw content of the file.

The Columns field allows you choose a subset of columns you
would like to replicate. If empty, all the fields will be read.

The Format option allows you to limit the files that will be ingested. If you leave this option as Auto-Detect, the file selection
process will determine the file type dynamically when it opens the file for reading.

The Process Single File option treats each file as a separate execution instance of the job and creates a Sync File per file

The Load newer/updated files only option allows to only read files that have changed since the last time the Job Reader
executed.

The Move files to folder option allows to move files that were processed to a different folder (local files only).

The Include Files from Subfolders… option allows you to read all files found under the directory and sub-directories.

The Add a Column… option allows you to add a column to the output with the name of the file where the record was found

Document root path: when dealing with an XML or a JSON document, uses the path provided to filter the document
content or read from a specific path. See the JSON/XML Column Transformation section for more information on how to
configure this field.

Reading CSV Files
Certain flat files, such as comma-delimited files (normally with a .CSV file extension) can be ingested by a

Job Reader. To see all available options, select the CSV file format in the Format dropdown box.

 GENERAL RELEASE

28

Has Header Row: When checked, gives a hint to
DataZen that the first row of data contains column
names.

Uses Quoted Identifiers: check this box if the
document contains data elements surrounded by
double-quotes (such as content that spans multiple
rows).

Column Delimiter: When using a field delimiter,
indicates the character used to mark the end of a
field. By default, this value is \t (tab).

Field Width: for fixed-length documents only;
comma-separated length of each field.

Comment Tokens: Comma-separated list of strings
used to identify comments in the document.

Note that DataZen will automatically identify the data type to use in a document by reading the first 99

records. If records past this limit contain an unexpected data type in a given column, the column will be

converted back to a String.

HTTP/S REST API Job Reader
DataZen can be configured to extract data using REST APIs from a vast array of Internet data sources, including

Social Media platforms, CRM/ERP SaaS platforms, and custom APIs. In order to consume REST APIs, DataZen

supports the following capabilities:

• API Service Authentication:

o API Key: use an API key as a parameter in the URL or as a custom header

o Basic Auth: use basic authentication using a user id and encoded password

o Token: use a shared token as an authentication header

o Bearer Token: use a bearer token, normally required by OAuth 2.0 schemes

• Refresh Tokens: certain APIs leveraging OAuth 2.0 require the use of Refresh tokens

• API Paging: certain APIs implement a paging mechanism when calling certain endpoints;

DataZen implements three paging strategies:

o Simple Offset: uses a count offset mechanism through a URL parameter

o Simple Paging: uses a paging offset mechanism through a URL parameter

o Next URI Link: uses a link provided in the response document as the next URL

o Bookmark/Token: uses a node in the response document to use as a URL parameter

• High Watermark: used when calling certain REST APIs from a last known value to avoid fetching

all records too many times

While the API Service Authentication and Refresh Tokens are handled by the connection settings, the

API Paging and High Watermark settings are specified here. The following example shows how to

configure a job that extracts data from the Mailchimp service to obtain all the members of a specific list;

this requires that the List ID is known (the list ID is provided as part of the URL).

 GENERAL RELEASE

29

You can pre-fill specific settings by choosing an
existing Quick Setup option. These options are
filtered based on the service connection selected,
and as a result it may be empty.

• URL: lists/123456/members?count=100

• HTTP Verb: GET

• Paging Strategy: Simple Offset, using the
offset Query Parameter

• High Watermark: left empty (extracting all
members every time)

• Apply JSON/XML Tx: Yes, specifying
members as the root path

• Add Payload Column: _raw (this setting is
optional; it adds a column dynamically
with the entire record payload as JSON)

JSON/XML Column Transformation
The JSON/XML transformation option allows you to convert a document into a row and columns format

automatically. This option is optional calling a REST endpoint, and mandatory when loading JSON or XML

files. By default, if left empty, the payload received will be turned into rows and columns from the top

of the document.

The path notation differs between JSON and XML documents, but essentially the complete document

will be read. However, when specifying a path (as an XPath for XML documents or JSON Selector for

JSON documents), only the content underneath this path will be converted into rows and columns.

ROOT PATH IS CASE-SENSITIVE

Dynamic Parameters
Dynamic Parameters are a feature of HTTP/S REST job readers; they allow parameter replacement

within the URI being used to call the endpoint multiple times and provide a single, combined result set.

When used as part of the request URI, the HTTP URI field displays a green background.

To define dynamic parameters, click on the Dynamic Parameters button at the bottom.

 GENERAL RELEASE

30

Check the Use data-driven parameters option, select a
database source from the list, and enter a SQL
command. The command can be any valid SQL request,
including EXEC commands.

Click Preview to see the output.

To append the input parameter to each row from the
source system, check the Add parameter values to
output dataset option.

To request each input parameter to be executed
separately as individual job execution (instead of
appending all results into a single output), check the
Run each row as a separate job option.

NOTE: THE FIRST COLUMN FROM THE DYNAMIC PARAMETERS LIST WILL BE USED AS THE KEY

FOR TRACKING THE LAST “HIGH WATERMARK” VALUE. AS A RESULT, MAKE SURE THE FIRST

COLUMN IS A UNIQUE VALUE IN THE ABOVE QUERY.

Once defined, you can use the column names of the dynamic parameters as input variables into the URI.

For example, if the above represents twitter IDs, and the column name is “userId”, use this notation:

{{@param.userId}}.

You can also build this URI by clicking on the DataZen Function icon. The dynamic parameter column

names are available under the Dynamic Parameters node. Double-click on the desired parameter to

insert it.

 GENERAL RELEASE

31

Finally, when Dynamic Parameters are defined, clicking on the Preview link will prompt you to select a

parameter value.

XML Example

Let’s consider the following XML document:

<?xml version="1.0" encoding="utf-8" ?>
<bookstore>
 <book genre = "autobiography" publicationdate="1981-03-22" ISBN="1-861003-11-0">
 <title>The Autobiography of Benjamin Franklin</title>
 <author>
 <first-name>Benjamin</first-name>
 <last-name>Franklin</last-name>
 </author>
 <price>8.99</price>
 </book>
 <book genre = "novel" publicationdate="1967-11-17" ISBN="0-201-63361-2">
 <title>The Confidence Man</title>
 <author>
 <first-name>Herman</first-name>
 <last-name>Melville</last-name>
 </author>
 <price>11.99</price>
 </book>
 <book genre = "philosophy" publicationdate="1991-02-15" ISBN="1-861001-57-6">
 <title>The Gorgias</title>
 <author>
 <name>Plato</name>
 </author>
 <price>9.99</price>
 </book>
</bookstore>

 GENERAL RELEASE

32

Root Path Output

<blank>
bookstore

When the root path is empty, or set the bookstore, DataZen will inspect the first child
element (book) and consider all book nodes for its rows. Each book attribute will become a
column, and the book node itself will contain the inner XML of the book node.

bookstore/book

When the root path is set to bookstore/book, DataZen will treat the attributes and
children of the book node as column names. Since the author node is a parent node of
additional information, it contains the inner XML of the node.

JSON Document Example

Let’s consider this JSON document; the document contains three properties, one of which is an array of

values.

{

 "range": "Sheet1!A2:B9",

 "majorDimension": "ROWS",

 "values": [

 [

 "Platform Acquisition Cost",

 "$100,000"

],

 [

 "SDK Cost",

 "$25,000"

]

]

}

Root Path Output

<blank>
$

When the root path is empty, or set $, DataZen will inspect the top node.

values
$.values

When the root path is set to values, or $.values, DataZen will only look within the values
property. Since its content is an array of values, column names are created automatically
as col0, col1…

 GENERAL RELEASE

33

JSON Array Example

Consider the following JSON Array consisting of objects, taken from a Solr search response. The

response header contains useful information; however, the response.docs node contains an array of

objects with the search result.

{

 "responseHeader":{

 "status":0,

 "QTime":10,

 "params":{

 "q":"*:*",

 "_":"1615932159060"}},

 "response":

 {"numFound":3,"start":0,"numFoundExact":true,"docs":[

 {

 "id":"1",

 "title":["ACADEMY DINOSAUR"],

 "description":"A Epic Drama of a Feminist And a Mad Scientist who must Battle a Teacher in The Canadian Rockies",

 "release_year":2006,

 "rating":"PG",

 "last_update":"2006-02-15T05:03:42.0000000",

 "_version_":1694589148527067136},

 {

 "id":"3",

 "title":["ADAPTATION HOLES"],

 "description":"A Astounding Reflection of a Lumberjack And a Car who must Sink a Lumberjack in A Baloon Factory",

 "release_year":2006,

 "rating":"NC-17",

 "last_update":"2006-02-15T05:03:42.0000000",

 "_version_":1694589148544892929

 }

]

 }

}

Root Path Output

<blank>
$

When the root path is empty, or set $, DataZen will inspect the top node. The response
node contains further information about the search operation.

response
$.response

When the root path is set to response, or $.response, DataZen will inspect the response
node. The docs property however contains the actual search result.

 GENERAL RELEASE

34

response.docs
$.response.docs

When the root path is set to response.docs, or $.response.docs, DataZen will only look
within the docs property. Since its content is an array of objects, column names are
extracted from the JSON document automatically.

Messaging Consumers
DataZen can be used as a Messaging Consumer against a variety of messaging platforms, including

MSMQ, AWS SQS, Kafka, Azure Event Hub, Azure Messaging Hub, Google PubSub and RabbitMQ. This

section explains how to configure the listeners and the options available to forward these messages.

DataZen offers the following capabilities:

• Automatic reconnection: Consuming messages is an ongoing operation: DataZen will connect to

the messaging platform and will attempt to reconnect after network failures automatically and

as quickly as possible

• Automatic message buffering: when configured, messages can be held temporarily before being

forwarded in bulk to the target system if possible

• Automatic message properties forwarding: when forwarding messages from one platform to

another, as many properties of the original message can be forwarded to the target platform if

possible

• Passthrough or Payload inspection: DataZen supports passthrough messaging or deep payload

inspection for forwarding the message content into a target system that expects rows and

columns

When using a Messaging Platform as the source,
select one of the processing options as needed;
see below for further information.

Specify the Queue/Topic name and which message
metadata properties to include, and any message
headers if available.

You can also specify a sample message payload to
test the functionality of the reader without
actually consuming a message from the messaging
platform.

The following processing options are available:

Processing Option JSON/XML
Transformation

Targets Replay Headers &
Metadata
Available

Passthrough

not available Messaging Targets No Yes

 GENERAL RELEASE

35

Message to
Dataset

not available No Target
Drives Targets
Database Targets
HTTP/REST Targets
BigData Targets

Yes, with No
Target

Yes

Payload to Dataset available No Target
Drives Targets
Database Targets
HTTP/REST Targets
BigData Targets

Yes, with No
Target

No

Note that unlike other Job Readers, you must disable the Job before changing its settings.

When the listener is running, the status for the job
will be displayed as Listening as shown here. You
can either disable the job manually, or do it in the
Edit screen. To edit this job, double-click on it.

The edit screen will be disabled is the job
is listening. Click on the Stop button to
disable the job and start changing the
necessary options. An option to restart
the job will be shown upon closing this
screen.

Pointer Values: Editing the High Watermark
DataZen tracks last known values (known as Last Pointers) for its High Watermark tracking: when a

Custom Change Data Capture mechanism is selected for identifying deleted records, when a

Timestamp/DateTime column is identified for the Job Reader for databases, when the option to only use

the latest files is selected for Files replication, or when a High Watermark field is selected for REST APIs.

In the case of Change Tracking Data Capture, the Job Reader tracks the last known value of the Change

Token of the CDC table from the source system. This token is usually a string that represents a point in

time that the CDC engine uses to identify subsequent changes. DataZen keeps a copy of the last known

token so that only deleted operations from the last execution are returned by the CDC engine.

When a Timestamp/DateTime column is selected, DataZen modifies the SQL Read command to identify

new and updated records since the last time the job ran. When a Job Reader runs and returns records,

DataZen finds the maximum value of the Timestamp/DateTime column from the data returned and will

use it as the new pointer the next time the Job Reader runs.

 GENERAL RELEASE

36

You can edit the Last Pointers if needed (click on the Edit Pointers button on the Properties window).

This screen allows you to modify both values (when relevant), and either specify a date/time, a numeric

value, or a custom field. You can also reset the Pointers to a NULL value.

Job Writers
Generally speaking, a Job Writer pushes data to a target system. A Job Writer can be created directly

within a Data Sync job, or separately. When created as part of a Data Sync Job, the Sync Files are

automatically consumed and not available for replay. However, when the Job Writer is created

independently from the Sync Job, the Sync Files remain on disk and are available for other Job Writers

and for future replay as needed.

Create a Job Writer from An Existing Job Reader
The simplest way to create a Job Writer is to build it from an existing Job Reader. Doing so preloads

information into the Job Writer configuration, such as the name of the corresponding reader, the

location of the Sync Files, the schedule information and more.

Select the Job Reader previously created,
right-click on it, and choose New -> New Sync
Writer from Selected Reader.

NOTE: this option is not available for Job
Readers that are Direct Jobs (Writer is already
defined in the Sync Job itself) because the Sync
Files are not available for replay.

 GENERAL RELEASE

37

Enter a name for the job writer.

The Sync Path should point to the location of
existing Sync Files; this should be
automatically set.

If the data was encrypted with PGP, select the
PGP Encryption tab, specify the PGP Private
Key file and enter the password.

Click the Load Data Sync File button to open
the Sync File, and click the preview… button.
This data is being read from the Sync File. This
step is needed to configure additional options.

Select the file you would like to start reading
from and click Open.

A confirmation window shows the changes
that are about to take place for this Job
Writer. In this case only the Initial Exec Id is
about to be updated.

Click Yes.

Once loaded, you can view the content of the
Sync File on the same screen.

 GENERAL RELEASE

38

Click on Replication Settings. All the
information should be pre-filled based on the
Sync File selected.

The Initial Execution Id represents the first
sequence number that contains the full initial
data set from the source system to be loaded
into the target system.

Because the Key Columns fields is selected,
records will be updated if the key values
match, and inserted when they are not found
in the target system. If this field is blank, all
records from the Sync File would be
considered new records (such as an audit log).

Select a Schedule if desired to let the Job
Writer check for new files. Alternatively, you
can update the Job Reader to trigger this Job
Writer upon completion.

Click on the Target System tab select a target
connection. In this case, we are choosing a
Local Path connection where we will create
JSON documents.

Configure the target options as desired (see
the Target Configuration Options section for
more information).

You can optionally configure Triggers that will
start other jobs upon completion of this one in
the Triggers section.

Click OK.

If no Cron schedule was selected, right-click on
the Job Writer and select Run.

NOTE: If you have specified a Cron Schedule,
the job starts automatically.

 GENERAL RELEASE

39

The Last Execution (with changes) window
shows you that 603 records were available in
the Sync File, and 603 were written to the
target table.

It took about 3 seconds to push the records
into JSON documents.

Database Targets

SQL Server (Native Provider)
When the SQL Server (Native Provider) system is selected in the Connection String form, DataZen uses a

highly optimized Upsert operation against SQL Server (using a MERGE command).

Automatic Ingestion: when checked,
schema drifting options are possible,
allowing DataZen to automatically add
columns to the target database and/or
change data types as needed,
depending on the option selected.

Target Table: Specify the name of the
target table to use; DataZen functions
can be used to change the name of the
target database, schema, and table.

NOTE: If Automatic Ingestion is
unchecked, you can provide a manual
script to be executed; see the following
section for details: ODBC Drivers &
Enzo Server.

ODBC Drivers & Enzo Server
When a specific ODBC driver (SQL Server, Oracle, MySQL or Teradata) has been selected for a

connection string, the target offers a less efficient, but more flexible replication options. The Job Writer

Target System screen allows you to specify the replication scripts you want to use for upsert and delete

operations.

Note: You can also use replication scripts for Native SQL Server connections by unchecking the Automatic

Ingestion option.

 GENERAL RELEASE

40

Execution Timeout: The execution timeout applies to both the Upsert and Delete
operations, and control how long the script is allowed to run before timing out. 0
means the script will not timeout.

Batch Count: The number of records sent to the target system (default: 1000). The
larger the number, the more memory is required by DataZen to build the batch
command; the maximum value is 100,000. For unique target platforms, such as Enzo
Server, you may need to set this value to 1.

Messaging / HTTP/S Options: Additional options may be made available for
Messaging endpoints. For example, when selecting an Azure Event Hub as the target
system, the Event Hub Name can be specified.

Drive Connection: Parquet-specific options are available when choosing a drive. See
the Parquet section for more information.

Click on the Generate Upsert Script
to build a SQL command that is
compatible with the target system.

To specify a Delete script, use the
Delete Script tab and click on the
Generate Delete Script link.

You can modify this script at any
time. The command created
should be able to perform an
Insert or an Update operation if a
record exists. However, this script
could be anything, including a call
to a Stored Procedure.

Field values are represented by
double curly brackets. For
example, {{ID}} field will be
replaced with the value of the ID
field.

NOTE: Field names are case
sensitive.

A number of pre-processing
functions are available. Use the
function area to insert specific
fields or commands in the script
directly by double-clicking on the
desired item. See the DataZen
Functions section for more
information.

Click Preview SQL to inspect the
command that will be sent to the
target database.

By default, the Upsert SQL script or Messaging body creates content for each data row available in the

Sync File. However, in some cases, you may need to execute a single command with an XML or Json

document per batch. See Sending an XML/Json Document below for more information.

Sending an XML/JSON Document
When a Job Writer uses a Custom SQL command for its Upsert logic, the SQL Batch send to the target

system can be built in two different ways:

• One SQL command per record

• One SQL command per batch

One SQL Command per Record

This is the default mode of operation for an Upsert and Delete script: a SQL command will be created for

each row found in the Sync File. The Batch Count setting controls how many SQL commands are sent to

 GENERAL RELEASE

41

the target at one time. For example, if there are 100 records in the Sync File, and the Batch Count is set

to 50, two batches of 50 SQL commands each will be sent to the target system.

One SQL Command per Batch

The Job Writer automatically switches to this mode if either the @concatJson or @concatXml operation

is found in the Upsert or Delete script. When this mode is used, a Json or XML document is created and

inserted into the SQL command where desired, and the Batch Count setting controls how many

objects/nodes are created in the Json or XML document respectively. For example, if there are 100

records in the Sync File, and the Batch Count is set to 50, two SQL commands are sent to the target

system, with each SQL command containing a XML/Json document of 50 nodes/objects each.

From the Upsert Script window,
place the cursor where you would
like to insert the Json/XML
document, and click on Insert
Json/XML document...

A dialog allows you to select the
fields to include in the document,
and the type of document to
create. Choose either JSON Array
per batch, or XML Document per
batch; click OK.

Selecting one of the “… per
batch” options will automatically
insert the @concat… operation.

 GENERAL RELEASE

42

The Upsert script will
automatically be modified to add
the appropriate @concat…
operation at the cursor location.

You may need to rename the
properties or node names as
expected by the target system.
You can also include DataZen
functions as needed.

To view how the script will look
like during execution, click on
Preview SQL…

As you can see, the SQL Batch is a
single EXEC command, and the
second parameter is a Json array
containing 2 objects.

Create Target DDL Scripts
When building a Target job, you can create the target object if the system is a relational database. The

target DDL script is automatically generated to facilitate the first-time creation of the destination table;

however, some options may need to be reviewed by a DBA to ensure proper performance.

The options to create the target DDL script varies by data source; however, two main screen options

exist for known database targets, and generic targets (Generic ODBC Driver).

Known Targets

Known database targets include SQL Server, MySQL, Oracle and Teradata. These targets provide a

database creation script that is compatible with the database engine automatically. For example, a

Teradata table creation script will be automatically generated based on the Change Log selected as

follows:

 GENERAL RELEASE

43

For Oracle, SQL Server and MySQL, you can optionally control the string data type creation based on the

length of the data itself, as captured from the source system. You can modify this script directly,

including adding columns and indexes.

Columns manually added to the table must be NULLABLE or have a DEFAULT value.

Generic Targets

When choosing a Generic ODBC Driver, additional options are available in the same screen, including the

quoted identifier to use, and the target data type to use for most available source data types.

 GENERAL RELEASE

44

Preview SQL Commands
DataZen allows you to preview SQL commands with actual data taken from the Change Log. This allows

you to visually inspect the commands being sent to the target system.

From the Target System tab, click
on the Preview SQL… link to
preview the commands that will
be sent to the target system.

Although you cannot run this
command directly, you can copy
and paste it into a development
environment to verify is it working
as expected.

NOTE: Changing the SQL
command in this window will not
update the template created in
the previous screen.

Similarly, the Delete Script needs to be provided; the Generate Delete Script link provides a sample SQL

command. The Delete script is only needed if the option to Propagate Deleted Records has been

selected under the Replication Settings tab.

HTTP/S Targets
When selecting an HTTP/S, the body of the message can be crafted as a JSON, XML or free-form text

content. When sending to a specific cloud platform, the payload should confirm to the expected format

of the service. When necessary, you can also configure additional Custom HTTP Headers to confirm to

the service endpoint requirements.

 GENERAL RELEASE

45

In this example, the target platform is a
Google Sheet. Writing data to a Google Sheet
is performed by sending a PUT request, using a
Content-Type set to application/json, using the
following URI:
 https://sheets.googleapis.com/v4/spreadsheets/SHEETID/
values/A@startindex?valueInputOption=RAW

The payload itself is a JSON document that
contains the data created as an array of JSON
Arrays (@concatjsonarr).

Messaging Targets
Messaging targets allow you to specify a message payload only if the Job Reader is not a Messaging

Listener with a Passthrough processing mode. The availability of the Delete Request tab depends on

whether the Job Reader was configured to identify deleted records.

In this example, the target messaging platform
is an Azure Event Hub. Each messaging
platform has specific options that can be
configured, such as the name of the target
topic or queue name.

When the Payload option is available, you can
specify a custom message format. Click on the
Generate Json/XML Payload link to build a
custom payload using the fields from the
source Sync File or data source.

Drive Targets
You can write data read by any Job Reader into target files (Parquet, CSV, XML and JSON). DataZen

includes the ability to distribute (bucketize) data dynamically using various options to spread the data

across multiple files. When using a deterministic data distribution strategy, DataZen also allows you to

push updates into existing files.

Common Write Options
When writing to a flat file, select the desired file format. Additional options will be displayed depending

on the format selected. Some of the options provided are common to all file formats and explained

 GENERAL RELEASE

46

below. Additional considerations are file creation vs. updating existing files, and data distribution

options.

The Date Field Identifier allows you to specify a date found
in the source data as the value used for date replacement
tokens (such as [mm]). If no field is selected, the job runtime
will be used for date replacement tokens. See Date
Replacement Tokens for more information.

Both the folder/container and file name can be specified
with tokens and DataZen Functions.

Shadow Copy

By default, DataZen obtains a copy of a remote file before making changes to it (only the files being

modified will be downloaded). Files are kept locally until the job completes, and are then uploaded as

part of the completion of the job.

The shadow copy option is a performance optimization feature that allows DataZen to keep files locally

cached between job executions to avoid unnecessary downloads; a time-to-live value indicates how old

the file can be before downloading it from the target system. This is primarily useful if the files are very

large and do not change frequently. For example, if a file could be modified daily on the target store,

you could set the shadow copy to refresh the file every 6 hours.

Create New Files

DataZen will create a file if the folder/container and file name are not found in the target drive.

However, in some cases you may want to force the creation of new files for certain scenarios, such as

creating a delta lake. This can be done by controlling the naming convention of the target folder and/or

file name in such a way that the combination of the folder and file name is never the same.

Here are a few examples on how to force the creation of new files:

- Leave the Date Field Identifier option unchecked to use the job runtime for date replacement

tokens, and create a unique folder\filename combination:

o container: files file name: address-[yyyy][mm][dd]_[hh][nn][ss].parquet

- Use a unique job setting variable:

o container: drop-@executionid file name: address.parquet

- Use an Enzo Function:

o container: drop-#rndguid() file name: address.parquet

Update Existing Files (Data Distribution/Bucketization)

DataZen includes the ability to distribute data dynamically using various options to spread the data

across multiple files. When using a deterministic bucketization strategy, DataZen also allows you to push

updates. This is useful when DataZen pushes changes only to the target file(s).

Here are a few examples on how to distribute data across multiple files:

- Check the Date Field Identifier option and select a date column from the data source used for

date replacement tokens and use them as part of folder\filename combination:

 GENERAL RELEASE

47

o container: files file name: address-[yyyy][mm][dd]_[hh][nn][ss].parquet

- Use other fields from the source data set in the folder\name combination:

o container: drop-{{country}} file name: address-{{state_code}}.parquet

Bucketization is the process of distributing data across multiple files in a way that

simplifies future read access to the data. Determinism ensures that the name in

which the row needs to be saved is based on the data itself, so that the name of the

file is predictable.

Date Replacement Tokens

A processing date is used to provide a date dimension available for the bucketization process; by

default, the processing date is the current time of the job when being executed; however, it can be set

to a known field name from the data set being processed. Bucketization of the data is done by naming

the file using specific tokens, and using these tokens as filters for the data being processed. The

available tokens are as follows:

Token Description Example
[yyyy] The 4-digit year of the processing date 2021

[yy] The 2-digit year of the processing date 21

[mm] The month of the processing date 1

[dd] The day of the processing date 27

[doy] The day of the year of the processing date (from 1 to 366) 159

[dow] The day of the week of the processing date (0: Sunday) 4

[hh] The hour of the processing date (from 0 to 23) 17

[nn] The minute of the processing date (from 0 to 59) 44

[ss] The seconds of the processing date (from 0 to 59) 30

Parquet Files
DataZen was optimized to read and write Parquet files efficiently. Internally, DataZen manages data type

transformation automatically if necessary and dynamically changes the schema of a Parquet file when

detecting schema drifting (for example, an Integer becoming a Long value).

When writing files, an additional option is provided allowing you to choose your compression algorithm.

The Compression option allows you to choose from: None,
GZip, and Snappy. By default, Snappy compression is used if
unspecified.

The following conversions occur automatically:

- Guid -> String

If the data set contains a Guid data type in its schema, it is automatically converted to a string

 GENERAL RELEASE

48

data type in the Parquet file. In addition, a custom metadata is added tracking the conversion:

DZ_CAST_GUID::{fieldname}. For example, if the userId field is a Guid in the source data, the

metadata added will be DZ_CAST_GUID_userId

- DateTime -> DateTimeOffset

If the data set contains a DateTime data type in its schema, it is automatically converted to a

DateTimeOffset data type in the Parquet file. In addition, a custom metadata is added tracking

the conversion: DZ_CAST_DT::{fieldname} or DZ_CAST_DT_UTC::{fieldname}. For example, if

the createdOn field is a DateTime in the source data and the date field if a UTC format, the

metadata added will be DZ_CAST_DT_UTC_createdOn

If the above metadata items are found in Parquet files, DataZen performs the reverse conversion when

reading the file.

JSON Files
You can emit JSON files by selecting JSON as the file format.

To create a single output file per record, check the Use
single record per file option. You should ensure that the file
name being created is unique for every record following the
guidance provided in the Data Distribution/Bucketization
section.

XML Files
You can emit XML files by selecting XML as the file format. DataZen can emit simple XML files in the

form <root><item></ item></root> or <item></ item> format in the Single record per file mode.

To create a single output file per record, check the Use
single record per file option. You should ensure that the file
name being created is unique for every record following the
guidance provided in the Data Distribution/Bucketization
section.

Specify the XML Root element, and the main element name
to be created. When selecting a single record per file, the
root element is ignored and the output is a single XML node.

CSV Formatting Options
When exporting to a flat file (CSV File Format) additional options become visible.

 GENERAL RELEASE

49

Column Delimiter: the field
delimited to use; default: \t (tab).

Fixed Fields Width: comma-
separated list of widths to use for the
fields being exported.

Add Header Row: when checked,
adds a row containing the name of
the columns for each field.

Force Quoted Identifiers: when
checked, adds a double-quote to all
fields and values. When unchecked,
only adds double-quotes when a field
name or value contains a delimiter or
contains new-line characters.

Flatten Text: removes new-line characters from text fields.

Trim Whitespace: Removes trailing white space characters.

DateTime Format: Date/Time default formatter using the local culture for date fields. A sample output is provided adjacent
to the field.

Big Data/NoSQL Targets

Google Big Query
DataZen supports writing data to Google Big Query tables. By design, Google Big Query Tables do not

support updating records; it is an insert only database.

On the top of the screen, select a Google Cloud Big Query Target System and enter a DataSet and Table

name. To create them automatically, choose Create if not found. You can use DataZen Functions to

create random tables.

 GENERAL RELEASE

50

The Write Behavior option is an important factor to ensure data successfully lands in this database. You

can choose between:

- Append to existing data (Write Append)

- Truncate Table First (Write Truncate)

- Only write if table is empty (Write If Empty)

To push specific columns from the source data, enter the list of columns separated by a comma. Click on

the pick link to choose from an available list of columns, or leave this field empty to send all available

columns. If a column name fails naming validation, an error will be displayed.

You can further map source column names to new ones in the target database. In the example below,

the title column will be named titlename in the database. If the column name provided is invalid an

error will be displayed.

CosmosDB
CosmosDB allows Insert, Update, and Delete operations. To write to a CosmosDB database, select a

connection configured to connect to an Azure CosmosDB endpoint. Enter the database and container

name, or select an existing one. You can use DataZen Functions to create them dynamically.

The PartitionKey Path allows you to indicate how records are to be partitioned in CosmosDB. By default,

the ‘id’ field will be used.

Because CosmosDB stores data as JSON documents, you can create your own JSON template; check the

Build a custom JSON Document option to see additional options. If unchecked, the JSON document will

be created automatically by DataZen.

Automatic JSON Document Generation

When the Build a custom JSON Document option is unchecked, you have multiple options to control

field mapping and column selection. You can choose which columns to send to CosmosDB by entering a

comma-separated list of columns in the Selected Columns field; click the pick link to select from the

source data set. Leave this field empty to send all available fields.

 GENERAL RELEASE

51

CosmosDB expects an ‘id’ field in the data set. If this field doesn’t exist, it can be

created automatically using the PartitionKey Behavior option selected.

If the data source does not contain an ‘id’ field, or you would like to use another field for the ‘id’ value,

select the desired PartitionKey Behavior option.

The following screenshot shows you how to map the film_id field to the ‘id’ attribute in the JSON

document. You can also use DataZen Functions to generate unique values or combine fields.

Unless you are building a custom JSON document, you can map field names if you want to modify the

source fields. If the target field name is invalid, and error will be displayed.

Build a Custom JSON Document

When the Build a Custom JSON Document is checked, you can create your own JSON document

template and use DataZen Functions as needed. You can also preview the JSON payload. If you use this

 GENERAL RELEASE

52

option, you must ensure your JSON document contains an “id” field as highlighted in the following

screenshot.

Data Sync Files
Data Sync files contain schema information about the source system, including the number of records

modified, and the date/time of the data extraction. These files also contain the actual data from the

source system in a compressed format. For advanced security, the files can be encrypted using PGP.

Conceptually, these files are similar to backup files, except they store data in a universal format that can

be sent to any target system in the correct format.

The naming convention of the Data Sync File ensures that each file can be replayed in the proper

sequence. This ensures that changes are applied in the correct order when being replayed.

In addition, a “.EFS” extension of the sync file indicates the file contains all the source records (such as

an initialization or a full data resync), while a “.EDS” extension indicates that it contains changes that

took place since the last Data Sync File was generated. EFS change logs are usually much larger than EDS

files.

Replay Sync Files
You can, at any time, choose to replay a Sync File (or multiple Sync Files) on a target system. Depending

on the target system and the options selected, replaying Sync Files allows you to:

• Recreate a target table with the last known state of the source system

• Replay a single Sync File if the target system was temporarily unavailable

To replay a Sync File, select a Job Writer, and follow these steps:

 GENERAL RELEASE

53

Select the Job Writer where you would like
to replay Sync FIles, then right-click on it
and choose Replay Sync Files...

You can replay from a specific point in time
(the dropdown shows the Execution Id and
its creation date), choose a single Sync File,
or replay from the Initial Execution Id that
you selected when the Job Writer was
created.

Depending on the target system, you may
have the ability to Truncate or Recreate the
target table before replaying the Sync File.

Click OK to start replaying the Sync File(s).

Resync Data
DataZen Manager allows you to resync the data from the source system by recreating a full initialization

file (Full Sync). Once the Sync File has been created with all the records, it will be processed

automatically by all the Job Writers that have a schedule defined.

To create a full Sync File, follow these steps:

Select the Job Reader you would
like to resync, then right-click on
Reinitialize Data (Full Sync).

A window will come up asking to
confirm the resync operation; click
Yes.

Once completed, a new Sync File
will be created with an EFS
extension.

Resync operations may not work as expected for CDC data sources since the CDC and

Change Tracking tables only hold recent changes made to the data.

 GENERAL RELEASE

54

Full Sync Files
Sync Files will contain a full copy of the source records when:

• The Job Reader is first executed

• A Resync operation is performed on an existing Job Reader

• A field is modified on all records in the source system (such as a timestamp)

• A field has been added or removed, and it was previously retrieved by the SELECT statement

While all the above scenarios will create a Sync File with all the records, only the Initialization and

Resync operations will create a Sync File with the EFS extension (Enzo Full Sync). All other files will have

the EDS extension (Enzo Delta Sync).

Full Sync Files for CDC data sources only contain the data found in CDC and Tracking

tables; you may need to create a different job to read all records from these tables.

Job Triggers
Job Triggers allow you to start other jobs upon completion of the current job where the triggers are

defined. Job Triggers are available for Job Readers and Job Writers

Job Triggers are not available for Messaging Jobs since they run continuously.

Multiple jobs can be triggers with different conditions: On Completion, On Success (always), On Success

(with data), and On Failure.

Condition Description

On Completion The trigger starts regardless of the success or failure status of the current
job.

On Success (Always) The trigger starts only if the current jobs succeeds whether any records were
fetched or processed.

On Success (With Data) The trigger starts only if the current jobs succeeds and at least one record
was fetched or processed.

On Failure The trigger starts only if the current jobs failed to execute.

 GENERAL RELEASE

55

In the Triggers tab, click on the icon to add a new
trigger. Triggers are started virtually at the same time
but in no specific order.

When adding a trigger, start typing for the job name,
or select it from the list. Select the desired condition
for executing the trigger and click OK.

Logging

Execution Log
DataZen exposes its internal operation log for more detailed information and to validate that the Jobs

are working as expected. The output window in DataZen Manager shows the last few entries available in

memory. To view the full log, and previous logs, see the Execution History section.

Execution logs are automatically stored by DataZen for auditing purposes.

 GENERAL RELEASE

56

Execution History
DataZen Manager allows you to see the history of past Job Reader and Job Writer executions. Select the

Job you would like to review and click on the Execution History button.

By default, the execution history
shows the jobs that resulted in
data being available for
processing. When Job Readers find
no new changes, or Job Writers
find no Sync File to apply, a history
record is created with 0 Records
Available.

To view all executions, including
those with 0 Records Available,
choose the Show All Executions
option in the dropdown box.

Runtimes and execution date/time
is also provided on this screen. Any
processing errors are displayed as
well.

To view the execution log of a specific job execution, click on the desired execution and view the

Detailed Log tab.

 GENERAL RELEASE

57

Data Pipeline
A Data Pipeline is a data transformation processing engine that modifies the data before the data is

saved. A Data Pipeline can help implement the following components:

• Data Filtering

Applies a secondary filter to the data by adding a SQL Where clause as a Data Filter. This can be

useful when the data source doesn’t support a full SQL syntax, or when filtering needs to occur

after hashing or masking has occurred.

• Data Hashing

Applies a hash algorithm to a selected data column (must be a string data type); supported

hashing algorithms are MD5, SHA1, SHA256, SHA384 and SHA512.

• Data Masking

Applies masking logic to a selected data column, such as credit card number or a phone number.

Supports generating random numbers, free-form masking, and generic / full masking.

• Data Quality

Validates simple rules against a data column and throws a warning or an error if the data

doesn’t match the specified rules.

 GENERAL RELEASE

58

• Dynamic Data Column

Adds a new column to the output as a constant value, a simple SQL formula, or an Enzo

Function.

• Remove Columns

Remove unwanted columns from the final output.

Both Job Readers and Job Writers can implement a Data Pipeline. When implemented by a Job Reader,

a Data Pipeline modifies the data before it is saved in the Sync File; this ensures that any Job Writer

reading from the Sync File will get the same data modifications. When applied to a Job Writer, the data

is modified before it is saved to the target system. This allows pushing the same data to different

systems using different Data Pipeline masking rules and filters.

Multiple components can be added to

a pipeline; they are executed in the

order provided, from top to bottom.

You can move the components using

the Move Up and Move Down

buttons. You can also disable a

component without removing it;

disabling a component bypasses its

processing, but keeps it saved so it can

be re-enabled in the future.

Click the green arrow to

enable/disable a component.

For example, the Data Pipeline above filters the records to the Alberta district, hashes the address field,

and masks the district according to the rule specified.

Data Filter
The Data Filter component allows you to apply a SQL-like filter to the data set, so that only the matching

records are replicated. When applied to a Job Reader, the data is filtered before being saved to the Sync

File.

 GENERAL RELEASE

59

When applying a filter, you can see

how many records are returned by

the filter at the bottom of the

screen (showing 11 records in this

example).

You can apply multiple filters using

an SQL-like syntax. See the

Microsoft DataColumn Expression

documentation on the available

syntax for the filter.

Data Hashing
The Data Hashing component allows you to hash a Column of a string data type to a hash value, using

either MD5, SHA1, SHA256, SHA384 or SHA512 algorithms. Because no vector/salt is generated, the

hash values generated are always the same for the same input string. However, even a slight change in

the input string will generated a very different hash output. In the example below, the address field is

hashed using the MD5 algorithm. You can add as many Data Hashing components if you need to hash

multiple fields. If the target system expects a specific length for the field being hashed, you can check

the Truncate Hash Value option; this will truncate the hash value to match the original string length;

however, this may reduce the strength of the hashing algorithm in its ability to generate unique values

for different input values.

Data Masking
The Data Masking component allows you to modify for privacy or compliance reasons. For example, you

may choose to mask a Phone Number field, or a Social Security number. Five masking options are

available:

 GENERAL RELEASE

60

• Default – replaces a string field with the character X; replaces a numeric field with 0; replaces a

date field with 1900-01-01 and NULL for other data types

• Credit Card – Exposes the last 4 digits of the credit card and replaces all other characters with X

• Email – Exposes the first character, and replaces the remainder with XXX@XXX.com

• Random Number – Replaces a numeric field with a random value based on the data type

• Custom String – Exposes the first few and last characters, as desired, and places a constant

string in the middle as provided

As many Data Masking components can be added, when masking multiple fields is needed. In the

example below, the default masking option is used on the address field.

Data Quality
The Data Quality component allows you to validate basic rules against a field, such as making sure the

field is numeric, not empty, not null, and is within a list of known values. For example, the following

Data Quality component ensures the address_id field is not NULL, not empty, and is a numeric value. If

the condition fails, DataZen can either exclude the records from the output, or throw an error and stop

further processing.

 GENERAL RELEASE

61

Dynamic Data Column
The Dynamic Data Column component allows you add columns dynamically to a data set, specify its data

type, and use existing fields to construct it if desired.

For example, the following screenshot shows you how to add a dynamic column, named taxCol, that

calculates a tax amount of 6%, with a SQL Expression that uses the amount field (amount * 0.06), and

setting the column as a Float data type.

The expression can either use a SQL-like syntax, or a simpler Enzo format.

SQL Expression
The SQL Expression treats the formula as a simpler SQL command, allowing you to leverage a number of

operations on data. Because the SQL syntax uses a limited version of the T-SQL syntax, string quotation

 GENERAL RELEASE

62

marks are single quotes. Operations such as in, between, like, not, or, and are available. You can use

brackets when using field names. The following functions are allowed: CONVERT, LEN, ISNULL, IIF, TRIM,

and SUBSTRING. Here are a few valid examples:

• SUBSTRING(phone, 7, 8)

• IIF(ISNULL(amount), 0, amount * 10)

See Microsoft’s documentation on DataColumn Expressions for a complete description of.

Enzo Expression
If an Enzo Expression is used, every row is processed individually using the DataZen Functions. These

must be simple expressions that can use other fields using the {{field}} convention. For example, if the

Expression is #rndguid(), the new column will have a unique GUID value assigned in every row.

See the DataZen Function section for more information.

Remove Column
The Remove Column component allows you to ensure a specific column does not get replicated. You can

either select an existing column from the list provided, or type the name of a column (one per line).

DataZen Functions
DataZen functions give you the ability to transform data before data is processed for execution, but

after the data values of the source dataset have been replaced. These functions are only available in

multiple places (see the Uses section below).

Functions are identified by a # moniker. For example, the ''#toiso8601({{payment_date}})', converts the value

of the “payment_date” field from the source system into an ISO 8601 compatible format.

Function Description Comments
#decrement(a)
#decrement(a, b)

Decrements a value by one, or by the
amount specified.

#decrement({{field1}}, 1)

 GENERAL RELEASE

63

#eval(code) Treats the inner parameter as a C#
script and executes its content.
Expects the output of the script to be
a string or an object that supports the
.ToString() method.

Use this function to execute a more
complex C# operation. See the Microsoft
documentation for the
CSharpScript.EvaluateAsync<dynamic>
operation.

#format(a, b, …) Uses the C# string.Format syntax to
build a string with any number of
parameters

The C# syntax uses {0} for the first
parameter, {1} for the second, and so
forth.

#format(‘User {0} lives in {1}’, {{userId}},
{{state}})

#formatdate(date, format)
#utcformatdate(date, format)

Formats a string value into a date with
a specific format (following the C#
DateTime.ToString(format) notation)

#formatDate(11/01/2000T08:00:00.0000,
0:MM/dd/yy H:mm:ss)

#increment(a)
#increment(a, b)

Increments a value by one, or by the
amount specified.

#increment({{field1}}, 25)

#http_get(…)
#http_post(…)
#http_put(…)
#http_delete(…)

Performs an HTTP/S call to an internet
resource and returns a string as
output. If the call to the HTTP
resource is an image, the content is
returned as an Hexadecimal
representation of the bytes of the
image.

See the Enzo HTTP Functions section
for more information.

#http_get({{field_url}})

#isnullorempty(a,b) Returns value ‘b’ if value ‘a’ is a NULL
value or an empty string

You can use this function to replace a
NULL value with a constant, or the
content of another field

#isnullorempty({{field1}}, 0)

#left(a, n) Returns the left-most n characters of a
string

#left(‘this is a test’, 5)

#now() Returns the current datetime in the
local timezone of the server

#pick(a,b,c…) Randomly selects a value from the list
provided as parameters

Any number of parameters can be
provided

#replace(a, b, c) Replaces all occurrences of b with c, in
string a

#replace(‘this is a cat’, ‘cat’, ‘dog’)

#right(a, n) Returns the right-most n characters of
a string

#right(‘this is a test’, 5)

#rnddouble(a,b) Generates a random double value
between two numbers

Both the lower and upper bound values
are required

#rndguid() Returns a new random GUID

 GENERAL RELEASE

64

#rndint(a,b) Generates a random integer value
(Int32) between two numbers

Both the lower and upper bound values
are required

#tohex64(a) Transforms a value into an Hex64
representation

#tohex64(‘this is a test’)

#toiso8601(x) Converts a datetime field into a ISO
8601 compliant format

This function converts a datetime field
into a string in the ISO 8601 format
assuming the date is in the current
timezone

#torfc1123(x) Converts a datetime field into a RFC
1123 compliant format

#utcnow() Returns the current datetime in UTC
format

#utctoiso8601(x) Converts a UTC datetime field into a
ISO 8601 compliant format

This function converts a datetime field
into a string in the ISO 8601 format
assuming the date is in the UTC timezone

#utctorfc1123(c) Converts a UTC datetime field into a
RFC 1123 compliant format

#urlencode(c)

URL encodes the value provided so it
is safe to pass as a URL parameter.

Nested Functions
You can nest functions by adding them together in a call. For example, the following operation gets the

current time in UTC, returns an ISO8601 compliant date format, and URL encodes the output so it can be

passed in a URL function:

#urlencode(#toiso8601(#utcnow()))

Uses
Enzo Functions can be used in multiple places throughout DataZen, namely:

• Data Pipelines Dynamic Columns

• URL of a Sync Job using an HTTP Connect as the source

• Custom SQL Scripts in a Database Target operation

• Name of a database table a database Target

• URI Endpoint, XML or JSON payloads in an HTTP Target

• Initialization and Finalization database scripts when using a DB Target

Enzo HTTP Functions
Calling HTTP Endpoints within a Data Pipeline is a feature that allows you to use the data provided by

the job as input records. In other words, for each input record, an HTTP method will be called. Enzo

HTTP Functions can be invoked in multiple ways to make both authenticated and unauthenticated calls

to HTTP REST endpoints.

 GENERAL RELEASE

65

The parameters used by the HTTP functions depend on whether or not the call is authenticated and the

type of call being made. The following signatures are allowed:

Function Param 1 Param 2 Param 3 Param 4 Description

http_get
http_delete

uri Call to HTTP endpoint without
authentication

headers uri Call to HTTP endpoint with custom headers
without authentication

@conn(key) uri Call to HTTP endpoint using a pre-defined
HTTP connection string

@conn(key) headers uri Call to HTTP endpoint with custom headers
using a pre-defined HTTP connection string

http_post
http_put

body uri Call to HTTP endpoint without
authentication with the specified body

body headers uri Call to HTTP endpoint with custom headers
without authentication with the specified
body

@conn(key) body uri Call to HTTP endpoint using a pre-defined
HTTP connection string with the specified
body

@conn(key) body headers uri Call to HTTP endpoint with custom headers
using a pre-defined HTTP connection string
with the specified body

When specifying a pre-defined connection, use the following format: @conn(key). The key should be

the name of the Central Connection String to use that represents the HTTP Endpoint, its authentication

mechanism, and Rate Limiting setting. HTTP Enzo Function calls can use any of the supported

authentication mechanisms including API Keys and OAuth 2.0 bearer tokens.

When specifying custom headers, the headers parameter should be comma-separated, and the header

itself should be in the normal HTTP header notation: header:value. When specifying multiple headers,

the parameter should be single-quoted: ‘header1:val1,header2:val2’.

Example 1: Unauthenticated HTTP Get
The following example performs an HTTP GET operation and returns a string from a service endpoint

running on the localhost without authentication:

http_get(https://localhost/func1)

Example 2: Unauthenticated HTTP Post with Headers
Sends an HTTP POST operation to a localhost endpoint unauthenticated, passing a body and a custom

Content-Type header. Sends the userKey and loginId column values for each row processed by the job.

http_post(‘{ “id”: {{userKey}}, “userId”: “{{loginId}}”}’,‘Content-Type:text/json’, https://localhost/func1)

Example 3: Authenticated HTTP Get
Sends an HTTP GET operation to the “TWITTER” HTTP connection string, using the /users relative URI,

and passing the userid value found in the source dataset for each record processed by the job. This call

 GENERAL RELEASE

66

returns a JSON document of the tweets for the given userid; if this function is used in a Dynamic Column

(in a Data Pipeline), the new column value will contain the JSON document returned by this HTTP

request.

http_get(@conn(TWITTER), /users/{{userid}}/tweets)

Sync Agent REST API
You can use HTTP/S REST commands against a DataZen Sync Agent to perform most of the operations

available in DataZen Manager, with a few exceptions for security reasons.

To enable REST access to an agent, select the agent in DataZen Manager and choose DataZen Agent

Settings from the menu. Select the desired Access Level and whether to limit access to GET operations

only.

The complete documentation for the Sync Agent REST API can be found online:

https://www.enzounified.com/blog/DataZenAPIDocumentation

https://www.enzounified.com/blog/DataZenAPIDocumentation

 GENERAL RELEASE

67

 GENERAL RELEASE

68

Appendix

Limitations

Target DDL Script

• Building target DDL scripts is only available for SQL Server, MySQL, Oracle and Teradata

databases.

• Not all data types may be accurate; some data types may be modified from the original source

system to ensure transportability of the data.

• When the source system is MySQL, the schema information for string length and other data

types may be inaccurate due to MySQL driver issues. The script that is generated to create the

target table may need to be modified manually.

• When the source system is an ODBC driver or Enzo, the precision or decimal data types and

string length sizes of the source system may not be available.

Upsert Script

• Upsert scripts generated may need to be modified to comply with the database engine

• MySQL Notes

o The generated Upsert script depends on the ON DUPLICATE KEY UPDATE clause, which

implies the table should have a key or unique index defined on the Key Columns for the

script to work

• Oracle Notes

o DataZen stores binary data types as Base64 string, so the Upsert command should

contain the following functions applied:

TO_BLOB(utl_raw.cast_to_raw({{fieldname}}))

o When the script is generated, date/time types fields are automatically converted as

follows:
TO_TIMESTAMP('{{fieldname}}', 'YYYY-MM-DD HH24:MI:SS.FF7')

Data Replication

• Geospatial information is replicated as a binary field in the target system.

Transactional Consistency Considerations
Because DataZen is a loosely coupled replication engine, replicating data with eventual consistency,

tables selected for replication are not guaranteed to be transactionally consistent by design. However,

two strategies can be used when transactional consistency is required for a few tables:

• Target Logical Access

Reports and applications running against the target system should implement logic that does

not display or use orphaned records (such as missing line items for an order) when possible

• Source Joined Data Sets

Implement a more complex source SELECT JOIN statement against multiple tables, so that the

 GENERAL RELEASE

69

data returned by the Sync Job represents all the records; use a custom stored procedure at the

target to split each record and perform the necessary Upsert/Delete operations.

Data Type Conversions
The following data type mapping tables provide an overview of the supported data types and their

correspondence across multiple database platforms. The direction of the replication may change the

data type conversion logic.

Oracle to SQL Server Data Mapping
ORACLE DATA TYPE SQL SERVER DATA TYPE

INT DECIMAL(38,0)

RAW(16) VARBINARY(16)

TIMESTAMP(4) DATETIME

CLOB(JSON) NVARCHAR(max)

VARCHAR2(4 BYTE) NVARCHAR(4)

NUMBER(9) DECIMAL(9,0)

VARCHAR2(20 BYTE) NVARCHAR(20)

DATE DATETIME

NUMBER(8,2) DECIMAL(8,2)

NUMBER(*,2) DECIMAL(38,2)

NUMBER(*,-2) DECIMAL(38,4)

BINARY_FLOAT REAL

BINARY_DOUBLE FLOAT

NUMBER FLOAT

INT DECIMAL(38,0)

VARCHAR2(20 BYTE) NVARCHAR(20)

NCHAR(25) NVARCHAR(25)

VARCHAR2(80 BYTE) NVARCHAR(80)

TIMESTAMP DATETIME

LONG RAW VARBINARY(max)

CLOB NVARCHAR(max)

BLOB VARBINARY(max)

MySQL to SQL Server Data Mapping
MYSQL DATA TYPE SQL SERVER DATA TYPE

INT INT

INT UNSIGNED BIGINT

VARCHAR(100) NVARCHAR(400)

DECIMAL(16,2) DECIMAL(16,2)

DATE DATETIME

CHAR(1) NVARCHAR(4)

TINYINT SMALLINT

SMALLINT SMALLINT

MEDIUMINT INT

INT INT

INT(4) INT

BIGINT BIGINT

FLOAT REAL

FLOAT(4) REAL

FLOAT(8) FLOAT

REAL FLOAT

 GENERAL RELEASE

70

BIT BIT

BIT(8) VARBINARY(1)

DATE DATETIME

DATETIME DATETIME

DATETIME(6) DATETIME

TIMESTAMP DATETIME

TIME TIME(7)

YEAR INT

VARCHAR(20) CHARACTER SET UTF8 NVARCHAR(60)

TEXT CHARACTER SET latin1 COLLATE NVARCHAR(max)

ENUM('a','b','c') NVARCHAR(4)

SET('a','b','c') NVARCHAR(20)

CHAR(1) NVARCHAR(4)

TINYTEXT NVARCHAR(255)

LONGTEXT NVARCHAR(max)

BLOB VARBINARY(max)

BINARY(10) VARBINARY(10)

VARBINARY(10) VARBINARY(10)

TINYBLOB VARBINARY(255)

LONGBLOB VARBINARY(max)

